English

∫ X 2 Cos X D X - Mathematics

Advertisements
Advertisements

Question

\[\int x^2 \text{ cos x dx }\]
Sum

Solution

\[\int x^2 \text{ cos x dx }\]
`  "Taking x"^2" as the first function and cos x as the second function " . `
\[ = x^2 \int\cos x dx - \int\left( \frac{d}{dx} x^2 \int\text{ cos x dx } \right)dx\]
\[ = x^2 \sin x - \int2x \text{ sin x dx }\]
\[ = x^2 \sin x - 2\left[ x\int\sin x - \int\left\{ \frac{d}{dx}\left( x \right)\int\text{ sin x dx } \right\}dx \right]\]
\[ = x^2 \sin x - 2\left[ - x\cos x + \int\text{ cos x dx } \right]\]
\[ = x^2 \sin x + 2x \cos x - 2 \sin x + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.25 [Page 133]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.25 | Q 7 | Page 133

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

If f' (x) = x + bf(1) = 5, f(2) = 13, find f(x)


\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

` ∫   cos  3x   cos  4x` dx  

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int \tan^3 \text{2x sec 2x dx}\]

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int x^3 \cos x^2 dx\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]


\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]

\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


\[\int \left( e^x + 1 \right)^2 e^x dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×