Advertisements
Advertisements
Question
Solution
\[\int x^2 \text{ cos x dx }\]
` "Taking x"^2" as the first function and cos x as the second function " . `
\[ = x^2 \int\cos x dx - \int\left( \frac{d}{dx} x^2 \int\text{ cos x dx } \right)dx\]
\[ = x^2 \sin x - \int2x \text{ sin x dx }\]
\[ = x^2 \sin x - 2\left[ x\int\sin x - \int\left\{ \frac{d}{dx}\left( x \right)\int\text{ sin x dx } \right\}dx \right]\]
\[ = x^2 \sin x - 2\left[ - x\cos x + \int\text{ cos x dx } \right]\]
\[ = x^2 \sin x + 2x \cos x - 2 \sin x + C\]
APPEARS IN
RELATED QUESTIONS
If f' (x) = x + b, f(1) = 5, f(2) = 13, find f(x)
Evaluate the following integrals:
If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]
\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]
Find : \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\]
\[\int \left( e^x + 1 \right)^2 e^x dx\]