Advertisements
Advertisements
Question
Solution
We have,
\[I = \int\frac{\left( x^2 + 1 \right) dx}{\left( 2x + 1 \right) \left( x^2 - 1 \right)}\]
\[ = \int\frac{\left( x^2 + 1 \right) dx}{\left( 2x + 1 \right) \left( x - 1 \right) \left( x + 1 \right)}\]
\[\text{Let }\frac{\left( x^2 + 1 \right)}{\left( 2x + 1 \right) \left( x - 1 \right) \left( x + 1 \right)} = \frac{A}{2x + 1} + \frac{B}{x - 1} + \frac{C}{x + 1}\]
\[ \Rightarrow \frac{\left( x^2 + 1 \right)}{\left( 2x + 1 \right) \left( x - 1 \right) \left( x + 1 \right)} = \frac{A \left( x^2 - 1 \right) + B \left( 2x + 1 \right) \left( x + 1 \right) + C \left( 2x + 1 \right) \left( x - 1 \right)}{\left( 2x + 1 \right) \left( x - 1 \right) \left( x + 1 \right)}\]
\[ \Rightarrow x^2 + 1 = A \left( x^2 - 1 \right) + B \left( 2x + 1 \right) \left( x + 1 \right) + C \left( 2x + 1 \right) \left( x - 1 \right)\]
Putting `x - 1 = 0`
\[ \Rightarrow x = 1\]
\[1 + 1 = A \times 0 + B \left( 2 + 1 \right) \left( 1 + 1 \right) + C \times 0\]
\[ \Rightarrow 2 = B\left( 3 \right)\left( 2 \right)\]
\[ \Rightarrow B = \frac{1}{3}\]
Putting `x + 1 = 0`
\[ \Rightarrow x = - 1\]
\[1 + 1 = A \times 0 + B \times 0 + C \left( - 2 + 1 \right) \left( - 1 - 1 \right)\]
\[ \Rightarrow 2 = C \left( - 1 \right) \left( - 2 \right)\]
\[ \Rightarrow C = 1\]
Putting `2x + 1 = 0`
\[ \Rightarrow x = - \frac{1}{2}\]
\[ \left( - \frac{1}{2} \right)^2 + 1 = A \left( \frac{1}{4} - 1 \right)\]
\[ \Rightarrow \frac{1}{4} + 1 = A \left( - \frac{3}{4} \right)\]
\[ \Rightarrow \frac{5}{4} = A \left( - \frac{3}{4} \right)\]
\[A = - \frac{5}{3}\]
\[ \therefore I = - \frac{5}{3}\int\frac{dx}{2x + 1} + \frac{1}{3}\int\frac{dx}{x - 1} + \int\frac{dx}{x + 1}\]
\[ = - \frac{5}{3} \times \frac{\log \left| 2x + 1 \right|}{2} + \frac{1}{3} \log \left| x - 1 \right| + \log \left| x + 1 \right| + C\]
\[ = - \frac{5}{6} \log \left| 2x + 1 \right| + \frac{1}{3} \log \left| x - 1 \right| + \log \left| x + 1 \right| + C\]
APPEARS IN
RELATED QUESTIONS
` ∫ tan x sec^4 x dx `
` ∫ tan^5 x dx `
Evaluate the following integrals:
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
\[\int\text{ cos x cos 2x cos 3x dx}\]
\[\int {cosec}^4 2x\ dx\]
\[\int\frac{1}{2 + \cos x} \text{ dx }\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]