English

∫ X 2 + 1 ( 2 X + 1 ) ( X 2 − 1 ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]
Sum

Solution

We have,

\[I = \int\frac{\left( x^2 + 1 \right) dx}{\left( 2x + 1 \right) \left( x^2 - 1 \right)}\]

\[ = \int\frac{\left( x^2 + 1 \right) dx}{\left( 2x + 1 \right) \left( x - 1 \right) \left( x + 1 \right)}\]

\[\text{Let }\frac{\left( x^2 + 1 \right)}{\left( 2x + 1 \right) \left( x - 1 \right) \left( x + 1 \right)} = \frac{A}{2x + 1} + \frac{B}{x - 1} + \frac{C}{x + 1}\]

\[ \Rightarrow \frac{\left( x^2 + 1 \right)}{\left( 2x + 1 \right) \left( x - 1 \right) \left( x + 1 \right)} = \frac{A \left( x^2 - 1 \right) + B \left( 2x + 1 \right) \left( x + 1 \right) + C \left( 2x + 1 \right) \left( x - 1 \right)}{\left( 2x + 1 \right) \left( x - 1 \right) \left( x + 1 \right)}\]

\[ \Rightarrow x^2 + 1 = A \left( x^2 - 1 \right) + B \left( 2x + 1 \right) \left( x + 1 \right) + C \left( 2x + 1 \right) \left( x - 1 \right)\]

Putting `x - 1 = 0`

\[ \Rightarrow x = 1\]

\[1 + 1 = A \times 0 + B \left( 2 + 1 \right) \left( 1 + 1 \right) + C \times 0\]

\[ \Rightarrow 2 = B\left( 3 \right)\left( 2 \right)\]

\[ \Rightarrow B = \frac{1}{3}\]

Putting `x + 1 = 0`

\[ \Rightarrow x = - 1\]

\[1 + 1 = A \times 0 + B \times 0 + C \left( - 2 + 1 \right) \left( - 1 - 1 \right)\]

\[ \Rightarrow 2 = C \left( - 1 \right) \left( - 2 \right)\]

\[ \Rightarrow C = 1\]

Putting `2x + 1 = 0`

\[ \Rightarrow x = - \frac{1}{2}\]

\[ \left( - \frac{1}{2} \right)^2 + 1 = A \left( \frac{1}{4} - 1 \right)\]

\[ \Rightarrow \frac{1}{4} + 1 = A \left( - \frac{3}{4} \right)\]

\[ \Rightarrow \frac{5}{4} = A \left( - \frac{3}{4} \right)\]

\[A = - \frac{5}{3}\]

\[ \therefore I = - \frac{5}{3}\int\frac{dx}{2x + 1} + \frac{1}{3}\int\frac{dx}{x - 1} + \int\frac{dx}{x + 1}\]

\[ = - \frac{5}{3} \times \frac{\log \left| 2x + 1 \right|}{2} + \frac{1}{3} \log \left| x - 1 \right| + \log \left| x + 1 \right| + C\]

\[ = - \frac{5}{6} \log \left| 2x + 1 \right| + \frac{1}{3} \log \left| x - 1 \right| + \log \left| x + 1 \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 176]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 21 | Page 176

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]

\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\] 

\[\int\frac{1}{x (3 + \log x)} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

` ∫   tan   x   sec^4  x   dx  `


` ∫      tan^5    x   dx `


Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int x \sin x \cos 2x\ dx\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int {cosec}^4 2x\ dx\]


\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×