Advertisements
Advertisements
Question
\[\int\text{ cos x cos 2x cos 3x dx}\]
Sum
Solution
\[\int\text{ cos x . cos 2x . cos 3x dx}\]
\[ \Rightarrow \frac{1}{2}\int\left[ 2 \cos 2x \cdot \cos x \right] \text{ cos 3x dx}\]
\[ \Rightarrow \frac{1}{2}\int\left[ \text{ cos } \left( 2x + x \right) + \text{ cos } \left( 2x - x \right) \right] \text{ cos 3x dx} ..............\left[ \because 2\text{ cos }A\text{ cos B }= \cos \left( A + B \right) + \text{ cos }\left( A - B \right) \right]\]
\[ \Rightarrow \frac{1}{2}\int\left( \cos3x + \cos x \right) \text{ cos 3x dx }\]
\[ \Rightarrow \frac{1}{2}\int \text{ cos }^2 \text{ 3x dx} + \frac{1}{2}\int\text{ cos } 3x \cdot \text{ cos x dx}\]
\[ \Rightarrow \frac{1}{2}\int\left( \frac{1 + \text{ cos }6x}{2} \right)dx + \frac{1}{4}\int2 \text{ cos 3x} \cdot \text{ cos x dx} ...................\left[ \because \cos 2x = \cos^2 x - 1 \right]\]
\[ \Rightarrow \frac{1}{4}\left[ x + \frac{\sin 6x}{6} \right] + \frac{1}{4}\int\left( \cos 4x + \cos 2x \right)dx\]
\[ \Rightarrow \frac{1}{4}\left[ x + \frac{\sin 6x}{6} \right] + \frac{1}{4}\left[ \frac{\sin 4x}{4} + \frac{\sin 2x}{2} \right] + C\]
\[ \Rightarrow \frac{x}{4} + \frac{\sin 6x}{24} + \frac{\sin 4x}{16} + \frac{\sin 2x}{8} + C\]
\[ \Rightarrow \frac{1}{2}\int\left[ 2 \cos 2x \cdot \cos x \right] \text{ cos 3x dx}\]
\[ \Rightarrow \frac{1}{2}\int\left[ \text{ cos } \left( 2x + x \right) + \text{ cos } \left( 2x - x \right) \right] \text{ cos 3x dx} ..............\left[ \because 2\text{ cos }A\text{ cos B }= \cos \left( A + B \right) + \text{ cos }\left( A - B \right) \right]\]
\[ \Rightarrow \frac{1}{2}\int\left( \cos3x + \cos x \right) \text{ cos 3x dx }\]
\[ \Rightarrow \frac{1}{2}\int \text{ cos }^2 \text{ 3x dx} + \frac{1}{2}\int\text{ cos } 3x \cdot \text{ cos x dx}\]
\[ \Rightarrow \frac{1}{2}\int\left( \frac{1 + \text{ cos }6x}{2} \right)dx + \frac{1}{4}\int2 \text{ cos 3x} \cdot \text{ cos x dx} ...................\left[ \because \cos 2x = \cos^2 x - 1 \right]\]
\[ \Rightarrow \frac{1}{4}\left[ x + \frac{\sin 6x}{6} \right] + \frac{1}{4}\int\left( \cos 4x + \cos 2x \right)dx\]
\[ \Rightarrow \frac{1}{4}\left[ x + \frac{\sin 6x}{6} \right] + \frac{1}{4}\left[ \frac{\sin 4x}{4} + \frac{\sin 2x}{2} \right] + C\]
\[ \Rightarrow \frac{x}{4} + \frac{\sin 6x}{24} + \frac{\sin 4x}{16} + \frac{\sin 2x}{8} + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]
\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]
\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]
\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]
\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]
\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]
\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]
\[\int \tan^3 \text{2x sec 2x dx}\]
\[\int\frac{x^2}{\sqrt{1 - x}} dx\]
\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]
\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]
\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{ dx}\]
\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]
\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]
\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]
\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]
`int 1/(cos x - sin x)dx`
\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]
\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]
\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]
\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{ dx }\]
\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{ dx }\]
\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]
\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]
\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]
\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]
\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]
If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then
If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]
\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]
\[\int \text{cosec}^2 x \text{ cos}^2 \text{ 2x dx} \]
\[\int x\sqrt{2x + 3} \text{ dx }\]
\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]
\[\int\sqrt{\frac{a + x}{x}}dx\]
\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]