English

∫ ( 4 X + 1 ) √ X 2 − X − 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]
Sum

Solution

\[\text{ Let I } = \int \left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\text{ Also, }4x + 1 = \lambda\frac{d}{dx}\left( x^2 - x - 2 \right) + \mu\]

\[ \Rightarrow 4x + 1 = \lambda\left( 2x - 1 \right) + \mu\]

\[ \Rightarrow 4x + 1 = \left( 2\lambda \right)x + \mu - \lambda\]

\[\text{Equating coefficient of like terms}\]

\[2\lambda = 4\]

\[ \Rightarrow \lambda = 2\]

\[\text{ And }\]

\[\mu - \lambda = 1\]

\[ \Rightarrow \mu - 2 = 1\]

\[ \Rightarrow \mu = 3\]

\[ \therefore I = \int \left[ 2\left( 2x - 1 \right) + 3 \right] \sqrt{x^2 - x - 2} \text{  dx }\]

\[ = 2\int\left( 2x - 1 \right) \sqrt{x^2 - x - 2}dx + 3\int\sqrt{x^2 - x - 2}\text{  dx }\]

\[ = 2\int\left( 2x - 1 \right) \sqrt{x^2 - x - 2} \text{  dx }+ 3 \int \sqrt{x^2 - x + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2 - 2} \text{  dx }\]

\[ = 2 \int \left( 2x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }+ 3 \int \sqrt{\left( x - \frac{1}{2} \right)^2 - 2 - \frac{1}{4}} \text{  dx }\]

\[ = \int \left( 2x - 1 \right) \sqrt{x^2 - x - 2} \text{  dx }+ 3 \int\sqrt{\left( x - \frac{1}{2} \right)^2 - \left( \frac{3}{2} \right)^2} \text{  dx }\]

\[\text{ Let x}^2 - x - 2 = t\]

\[ \Rightarrow \left( 2x - 1 \right)dx = dt\]

\[ \therefore I = 2\int \sqrt{t} \text{ dt } + 3\left[ \left( \frac{x - \frac{1}{2}}{2} \right) \sqrt{\left( x - \frac{1}{2} \right)^2 - \left( \frac{3}{2} \right)^2} - \frac{\left( \frac{3}{2} \right)^2}{2}\text{ log }\left| \left( x - \frac{1}{2} \right) + \sqrt{x^2 - x - 2} \right| \right]\]

\[ = 2 \left[ \frac{t^\frac{3}{2}}{\frac{3}{2}} \right] + \frac{3}{4} \left( 2x - 1 \right) \sqrt{x^2 - x - 2} - \frac{27}{8}\text{ log } \left| \left( x - \frac{1}{2} \right) + \sqrt{x^2 - x - 2} \right| + C\]

\[ = \frac{4}{3} \left( x^2 - x - 2 \right)^\frac{3}{2} + \frac{3}{4} \left( 2x - 1 \right) \sqrt{x^2 - x - 2} - \frac{27}{8}\text{ log }\left| \left( x - \frac{1}{2} \right) + \sqrt{x^2 - x - 2} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.29 [Page 159]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.29 | Q 5 | Page 159

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

\[\int \cos^2 \frac{x}{2} dx\]

 


Integrate the following integrals:

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]

\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

\[\int x^3 \sin x^4 dx\]

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

\[\int \cot^6 x \text{ dx }\]

\[\int \cos^5 x \text{ dx }\]

` ∫  {1}/{a^2 x^2- b^2}dx`

`  ∫ \sqrt{"cosec x"- 1}  dx `

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]


\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int \tan^3 x\ dx\]

\[\int \cot^5 x\ dx\]

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×