English

∫ ( X − 2 ) √ 2 X 2 − 6 X + 5 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]
Sum

Solution

\[\text{ Let I }= \int \left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\text{ Also, } x - 2 = \lambda\frac{d}{dx}\left( 2 x^2 - 6x + 5 \right) + \mu\]

\[ \Rightarrow x - 2 = \left( 4\lambda \right)x + \mu - 6\lambda\]

\[\text{Equating the coefficient of like terms}\]

\[4\lambda = 1\]

\[ \Rightarrow \lambda = \frac{1}{4}\]

\[\text{ And }\]

\[\mu - 6\lambda = - 2\]

\[ \Rightarrow \mu - 6 \times \frac{1}{4} = - 2\]

\[ \Rightarrow \mu = - 2 + \frac{3}{2} = - \frac{1}{2}\]

\[ \therefore I = \int \left[ \frac{1}{4}\left( 4x - 6 \right) - \frac{1}{2} \right] \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[ = \frac{1}{4} \int \left( 4x - 6 \right) \sqrt{2 x^2 - 6x + 5} dx - \frac{1}{2}\int\sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\text{ Let 2 x }^2 - 6x + 5 = t\]

\[ \Rightarrow \left( 4x - 6 \right)dx = dt\]

\[ \therefore I = \frac{1}{4}\int t^\frac{1}{2} \text{ dt }- \frac{1}{2}\int\sqrt{2\left( x^2 - 3x + \frac{5}{2} \right)}\text{  dx }\]

\[ = \frac{1}{4}\int t^\frac{1}{2} - \frac{\sqrt{2}}{2}\int\sqrt{x^2 - 3x + \left( \frac{3}{2} \right)^2 - \left( \frac{3}{2} \right)^2 + \frac{5}{2}} \text{  dx }\]

\[ = \frac{1}{4}\left[ \frac{t^\frac{3}{2}}{\frac{3}{2}} \right] - \frac{1}{\sqrt{2}}\int \sqrt{\left( x - \frac{3}{2} \right)^2 - \frac{9}{4} + \frac{5}{2}} \text{  dx }\]

\[ = \frac{1}{6} t^\frac{3}{2} - \frac{1}{\sqrt{2}} \int \sqrt{\left( x - \frac{3}{2} \right)^2 - \frac{9 + 10}{4}} \text{  dx }\]

\[ = \frac{1}{6} t^\frac{3}{2} - \frac{1}{\sqrt{2}}\int\sqrt{\left( x - \frac{3}{2} \right)^2 + \left( \frac{1}{2} \right)^2} \text{  dx }\]

\[ = \frac{1}{6} \left( 2 x^2 - 6x + 5 \right)^\frac{3}{2} - \frac{1}{\sqrt{2}} \left[ \left( \frac{x - \frac{3}{2}}{2} \right) \sqrt{\left( x - \frac{3}{2} \right)^2 + \left( \frac{1}{2} \right)^2} + \frac{1}{8}\text{ log }\left| \left( x - \frac{3}{2} \right) + \sqrt{x^2 - 3x + \frac{5}{2}} \right| \right] + C\]

\[ = \frac{1}{6} \left( 2 x^2 - 6x + 5 \right)^\frac{3}{2} - \frac{1}{\sqrt{2}} \left[ \frac{2x - 3}{4} \sqrt{x^2 - 3x + \frac{5}{2}} + \frac{1}{8}\text{ log} \left| \frac{2x - 3}{2} + \sqrt{x^2 - 3x + \frac{5}{2}} \right| \right] + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.29 [Page 159]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.29 | Q 6 | Page 159

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\] 

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int x^2 e^{- x} \text{ dx }\]

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int \tan^3 x\ \sec^4 x\ dx\]

\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×