English

∫ C O S E C 4 3 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int {cosec}^4  \text{ 3x } \text{ dx } \]
Sum

Solution

​∫ cosec4 3x dx
= ∫ cosec2 3x . cosec2 3x dx
= ∫ (1 + cot2 3x) cosec2 3x dx
Let cot (3x) = t
⇒   –cosec2 (3x) × 3 dx = dt

\[\Rightarrow {cosec}^2 \left( 3x \right)dx = - \frac{dt}{3}\]
\[Now, \int\left( 1 + \cot^2 3x \right)\]
\[ = \frac{- 1}{3}\int\left( 1 + t^2 \right) dt\]
\[ = \frac{- 1}{3} \left[ t + \frac{t^3}{3} \right] + C\]
\[ = - \frac{t}{3} - \frac{t^3}{9} + C\]
\[ = \frac{- \text{cot} \left( 3x \right)}{3} - \frac{\text{ cot }^3   3x}{9} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.11 [Page 69]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.11 | Q 8 | Page 69

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int \left( \tan x + \cot x \right)^2 dx\]

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]

`∫     cos ^4  2x   dx `


\[\int\text{sin mx }\text{cos nx dx m }\neq n\]

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int \cos^5 x \text{ dx }\]

\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

\[\int x^3 \text{ log x dx }\]

\[\int x e^{2x} \text{ dx }\]

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×