Advertisements
Advertisements
प्रश्न
\[\int {cosec}^4 \text{ 3x } \text{ dx } \]
योग
उत्तर
∫ cosec4 3x dx
= ∫ cosec2 3x . cosec2 3x dx
= ∫ (1 + cot2 3x) cosec2 3x dx
Let cot (3x) = t
⇒ –cosec2 (3x) × 3 dx = dt
\[\Rightarrow {cosec}^2 \left( 3x \right)dx = - \frac{dt}{3}\]
\[Now, \int\left( 1 + \cot^2 3x \right)\]
\[ = \frac{- 1}{3}\int\left( 1 + t^2 \right) dt\]
\[ = \frac{- 1}{3} \left[ t + \frac{t^3}{3} \right] + C\]
\[ = - \frac{t}{3} - \frac{t^3}{9} + C\]
\[ = \frac{- \text{cot} \left( 3x \right)}{3} - \frac{\text{ cot }^3 3x}{9} + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{1}{1 - \cos x} dx\]
\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]
\[\int\frac{e^x + 1}{e^x + x} dx\]
\[\int\sqrt{1 + e^x} . e^x dx\]
\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]
\[\ ∫ x \text{ e}^{x^2} dx\]
\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]
\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]
\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]
\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]
\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]
\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]
\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]
\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]
\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]
\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]
\[\int x^3 \cos x^2 dx\]
\[\int e^\sqrt{x} \text{ dx }\]
\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]
\[\int \sin^3 \sqrt{x}\ dx\]
\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx }\]
\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{ dx }\]
\[\int x\sqrt{x^2 + x} \text{ dx }\]
\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]
\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]
\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]
\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]
` \int \text{ x} \text{ sec x}^2 \text{ dx is equal to }`
\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]
\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]
\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int x\sqrt{2x + 3} \text{ dx }\]
\[\int\frac{1}{a + b \tan x} \text{ dx }\]
\[\int\sqrt{\frac{a + x}{x}}dx\]
\[\int\frac{1}{\sec x + cosec x}\text{ dx }\]
\[\int x^2 \tan^{- 1} x\ dx\]
\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]
\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]