हिंदी

∫ 2 X + 1 ( X − 2 ) ( X − 3 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]
योग

उत्तर

We have,
\[I = \int \frac{\left( 2x + 1 \right)dx}{\left( x - 2 \right) \left( x - 3 \right)}\]
\[\text{Let }\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} = \frac{A}{x - 2} + \frac{B}{x - 3}\]
\[ \Rightarrow \frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} = \frac{A\left( x - 3 \right) + B\left( x - 2 \right)}{\left( x - 2 \right) \left( x - 3 \right)}\]
\[ \Rightarrow 2x + 1 = A\left( x - 3 \right) + B\left( x - 2 \right)\]
\[\text{Putting }x - 3 = 0\]
\[ \Rightarrow x = 3\]
\[ \therefore 7 = A \times 0 + B \times \left( 3 - 2 \right)\]
\[ \Rightarrow B = 7\]
\[\text{Putting }x - 2 = 0\]
\[ \Rightarrow x = 2\]
\[ \therefore 5 = A\left( - 1 \right)\]
\[ \Rightarrow A = - 5\]
\[ \therefore I = - 5\int\frac{dx}{x - 2} + 7\int\frac{dx}{x - 3}\]
\[ = - 5 \log \left| x - 2 \right| + 7 \log \left| x - 3 \right| + C\]
\[ = \log \left| x - 3 \right|^7 - \log \left| x - 2 \right|^5 + C\]
\[ = \log \left| \frac{\left( x - 3 \right)^7}{\left( x - 2 \right)^5} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.30 | Q 52 | पृष्ठ १७७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{1}{1 - \cos 2x} dx\]

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

\[\int \sin^2\text{ b x dx}\]

\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

`int"x"^"n"."log"  "x"  "dx"`

\[\int x \sin x \cos x\ dx\]

 


\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]

If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×