हिंदी

∫ Cos 3 X √ Sin X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]
योग

उत्तर

\[\int\frac{\cos^3 x}{\sqrt{\sin x}}dx\]
\[ = \int\frac{\cos^2 x \cdot \cos x}{\sqrt{\sin x}} dx\]
\[ = \int\frac{\left( 1 - \sin^2 x \right) \cos x}{\sqrt{\sin x}}dx\]
\[Let \sin x = t\]
\[ \Rightarrow \cos x = \frac{dt}{dx}\]
\[ \Rightarrow \text{cos x dx} = dt\]
\[Now, \int\frac{\left( 1 - \sin^2 x \right) \cos x}{\sqrt{\sin x}}dx\]
\[ = \int\frac{\left( 1 - t^2 \right)}{\sqrt{t}} \cdot dt\]
\[ = \int\left( \frac{1}{\sqrt{t}} - t^\frac{3}{2} \right)dt\]
\[ = \int\left( t^{- \frac{1}{2}} - t^\frac{3}{2} \right)dt\]
\[ = \left[ \frac{t^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} - \frac{t^\frac{3}{2} + 1}{\frac{3}{2} + 1} \right] + C\]
\[ = 2\sqrt{t} - \frac{2}{5} t^\frac{5}{2} + C\]
\[ = 2\sqrt{\sin x} - \frac{2}{5} \ sin^\frac{5}{2} x + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.09 [पृष्ठ ५८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.09 | Q 13 | पृष्ठ ५८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


\[\int\frac{1 + \cos x}{1 - \cos x} dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\] 

` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int e^\sqrt{x} \text{ dx }\]

\[\int x \sin x \cos 2x\ dx\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int \sin^5 x\ dx\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×