Advertisements
Advertisements
प्रश्न
\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\]
योग
उत्तर
\[\text{Let I} = \int\frac{\ cosx}{\cos\left( x - a \right)}dx\]
\[\text{Putting x }- a = t \]
\[ \Rightarrow x = a + t\]
\[ \Rightarrow dx = dt\]
\[ \therefore I = \int\frac{\cos\left( a + t \right)dt}{\cos t }\]
\[ = \int\frac{\cos a \cos t}{\cos t} - \frac{\sin a \sin t}{\cos t}dt\]
\[ = \int\left( \cos a - \sin a \tan t \right)dt\]
\[ = t\cos a - \text{sin a } In \left| \text{sec t} \right| + C\]
\[ = \left( x - a \right)\cos a - \text{sin a } In\left| \sec\left( x - a \right) \right| + C \left[ \because t = x - a \right]\]
\[\text{Putting x }- a = t \]
\[ \Rightarrow x = a + t\]
\[ \Rightarrow dx = dt\]
\[ \therefore I = \int\frac{\cos\left( a + t \right)dt}{\cos t }\]
\[ = \int\frac{\cos a \cos t}{\cos t} - \frac{\sin a \sin t}{\cos t}dt\]
\[ = \int\left( \cos a - \sin a \tan t \right)dt\]
\[ = t\cos a - \text{sin a } In \left| \text{sec t} \right| + C\]
\[ = \left( x - a \right)\cos a - \text{sin a } In\left| \sec\left( x - a \right) \right| + C \left[ \because t = x - a \right]\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int \left( \tan x + \cot x \right)^2 dx\]
\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]
\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2} \text{dx} \]
\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]
` ∫ cos mx cos nx dx `
\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]
\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]
\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]
\[\int\frac{1}{x (3 + \log x)} dx\]
\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]
\[\int\frac{1}{1 + \sqrt{x}} dx\]
\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]
\[\int\frac{e^{2x}}{1 + e^x} dx\]
\[\int \tan^3 \text{2x sec 2x dx}\]
\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]
\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]
\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]
\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]
\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]
\[\int x e^x \text{ dx }\]
\[\int\cos\sqrt{x}\ dx\]
\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]
\[\int e^x \left( \cos x - \sin x \right) dx\]
\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]
\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]
\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]
\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]
\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]
\[\int\frac{1}{\sin x + \sin 2x} dx\]
\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]
\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]
\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to
If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]
\[\int\text{ cos x cos 2x cos 3x dx}\]
\[\int \tan^4 x\ dx\]
\[\int x\sqrt{2x + 3} \text{ dx }\]
\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]
\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]
\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]
Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .