हिंदी

∫ Tan 3 2 X Sec 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \tan^3 \text{2x sec 2x dx}\]
योग

उत्तर

`  ∫   tan^3 \text{x 2x . sec  (2x) dx}`
\[ = \int \tan^2 2x . \text{sec 2x  tan 2x dx}\]
`  ∫    ( \sec^2 \left( 2x \right) - 1 \right)   \text{sec (2x) tan (  2x ) dx `
\[\text{Let sec }\left( 2x \right) = t\]
`  ⇒  sec  ( 2x )  tan   (2x)  ×  2 = {dt}/{dx} `
`  ⇒  sec  ( 2x )  tan   (2x) dx = {dt}/{2} `
\[Now, \int \tan^3\text{ x 2x} . \text{sec} \left( \text{2x }\right)dx\]
\[ = \frac{1}{2}\int\left( t^2 - 1 \right) dt\]
\[ = \frac{1}{2}\left[ \frac{t^3}{3} - t \right] + C\]
\[ = \frac{1}{2} \left[ \frac{\sec^3 \left( 2x \right)}{3} - \text{sec}\left( \text{2x }\right) \right] + C\]
\[ = \frac{1}{6} \text{sec}^3 \left( \text{2x} \right) - \frac{\text{sec} \left( \text{2x }\right)}{2} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.09 [पृष्ठ ५९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.09 | Q 62 | पृष्ठ ५९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int\frac{1}{1 + \cos 2x} dx\]

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int x^2 \sin^2 x\ dx\]

\[\int x \sin x \cos x\ dx\]

 


\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int x \sin^3 x\ dx\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int \cos^5 x\ dx\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

\[\int x^3 \left( \log x \right)^2\text{  dx }\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×