Advertisements
Advertisements
प्रश्न
उत्तर
` ∫ tan^3 \text{x 2x . sec (2x) dx}`
\[ = \int \tan^2 2x . \text{sec 2x tan 2x dx}\]
` ∫ ( \sec^2 \left( 2x \right) - 1 \right) \text{sec (2x) tan ( 2x ) dx `
\[\text{Let sec }\left( 2x \right) = t\]
` ⇒ sec ( 2x ) tan (2x) × 2 = {dt}/{dx} `
` ⇒ sec ( 2x ) tan (2x) dx = {dt}/{2} `
\[Now, \int \tan^3\text{ x 2x} . \text{sec} \left( \text{2x }\right)dx\]
\[ = \frac{1}{2}\int\left( t^2 - 1 \right) dt\]
\[ = \frac{1}{2}\left[ \frac{t^3}{3} - t \right] + C\]
\[ = \frac{1}{2} \left[ \frac{\sec^3 \left( 2x \right)}{3} - \text{sec}\left( \text{2x }\right) \right] + C\]
\[ = \frac{1}{6} \text{sec}^3 \left( \text{2x} \right) - \frac{\text{sec} \left( \text{2x }\right)}{2} + C\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integrals:
` ∫ {x-3} /{ x^2 + 2x - 4 } dx `
Evaluate the following integral: