हिंदी

∫ X 2 ( X 2 + 1 ) ( 3 X 2 + 4 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]
योग

उत्तर

We have,

\[I = \int\frac{x^2 dx}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)}\]

Putting `x^2 = t`

\[\text{Then, }\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} = \frac{t}{\left( t + 1 \right) \left( 3t + 4 \right)}\]

\[\text{Let }\frac{t}{\left( t + 1 \right) \left( 3t + 4 \right)} = \frac{A}{t + 1} + \frac{B}{3t + 4}\]

\[ \Rightarrow \frac{t}{\left( t + 1 \right) \left( 3t + 4 \right)} = \frac{A \left( 3t + 4 \right) + B \left( t + 1 \right)}{\left( t + 1 \right) \left( 3t + 4 \right)}\]

\[ \Rightarrow t = A \left( 3t + 4 \right) + B \left( t + 1 \right)\]

Putting `t + 1 = 0`

\[ \Rightarrow t = - 1\]

\[ \therefore - 1 = A \left( - 3 + 4 \right) + 0\]

\[ \Rightarrow A = - 1\]

Putting `3t + 4 = 0`

\[ \Rightarrow t = - \frac{4}{3}\]

\[ \therefore - \frac{4}{3} = 0 + B \left( - \frac{4}{3} + 1 \right)\]

\[ \Rightarrow - \frac{4}{3} = B \times \left( - \frac{1}{3} \right)\]

\[ \Rightarrow B = 4\]

\[ \therefore \frac{t}{\left( t + 1 \right) \left( 3t + 4 \right)} = - \frac{1}{t + 1} + \frac{4}{3t + 4}\]

\[ \Rightarrow \frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} = \frac{- 1}{x^2 + 1} + \frac{4}{3 x^2 + 4}\]

\[ \Rightarrow \frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} = \frac{- 1}{x^2 + 1} + \frac{4}{3 \left( x^2 + \frac{4}{3} \right)}\]

\[ \Rightarrow \int\frac{x^2 dx}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} = - \int\frac{dx}{x^2 + 1} + \frac{4}{3}\int\frac{dx}{x^2 + \left( \frac{2}{\sqrt{3}} \right)^2}\]

\[ = - \tan^{- 1} \left( x \right) + \frac{4}{3} \times \frac{\sqrt{3}}{2} \tan^{- 1} \left( \frac{\sqrt{3}x}{2} \right) + C\]

\[ = - \tan^{- 1} \left( x \right) + \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{\sqrt{3}x}{2} \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.30 | Q 42 | पृष्ठ १७७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]

\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int\frac{1}{x (3 + \log x)} dx\]

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

\[\int x^3 \text{ log x dx }\]

`int"x"^"n"."log"  "x"  "dx"`

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{1}{1 + x + x^2 + x^3} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int x^3 \left( \log x \right)^2\text{  dx }\]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×