हिंदी

∫ sin 5 x cos 4 x dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]
योग

उत्तर

\[\text{ Let I }= \int\frac{\sin^5 x}{\cos^4 x}dx\]
\[ = \int\left( \frac{\sin^4 x . \sin x}{\cos^4 x} \right)dx\]
\[ = \int\frac{\left( \sin^2 x \right)^2 \cdot \sin x}{\cos^4 x}dx\]
\[ = \int\left( \frac{\left( 1 - \cos^2 x \right)^2 . \sin x}{\cos^4 x} \right)dx\]
\[ = \int\left( \frac{1 + \cos^4 x - 2 \cos^2 x}{\cos^4 x} \right) \sin x \text{ dx }\]
\[\text{ Putting cos  x = t }\]
\[ \Rightarrow - \text{  sin  x  dx  = dt }\]
\[ \therefore I = - \int\frac{\left( 1 + t^4 - 2 t^2 \right) dt}{t^4}\]
\[ = - \int t^{- 4} dt - \int dt + 2\int t^{- 2} dt\]
\[ = - \left[ \frac{t^{- 4 + 1}}{- 4 + 1} \right] - t + 2 \left[ \frac{t^{- 2 + 1}}{- 2 + 1} \right] + C\]
\[ = \frac{1}{3 t^3} - t - \frac{2}{t} + C\]
\[ = \frac{1}{3 \cos^3 x} - \cos x - \frac{2}{\cos x} + C .......\left[ \because t = \cos x \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 76 | पृष्ठ २०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


\[\int \sin^2 \frac{x}{2} dx\]

\[\int\text{sin mx }\text{cos nx dx m }\neq n\]

` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int x^3 \text{ log x dx }\]

\[\int x e^x \text{ dx }\]

\[\int x^2 e^{- x} \text{ dx }\]

\[\int x \sin x \cos x\ dx\]

 


\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×