हिंदी

∫ ( 1 + X 2 ) Cos 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]

योग

उत्तर

\[\text{ Let  I} = \int\left( 1 + x^2 \right) \cdot \cos 2x \cdot dx\]
\[ = \int\text{ cos  2x  dx } + \int x^2 \cdot \text{ cos  2x  dx }\]
\[ = \frac{\sin 2x}{2} + I_1 \text{ where I}_1 = \int x^2\text{ cos  2x  dx } . . . \left( 1 \right)\]
\[ I_1 = \int {x^2}_I \cos_{II} 2x \text{  dx }\]
\[ = x^2 \int\text{ cos  2x  dx } - \int\left\{ \frac{d}{dx}\left( x^2 \right)\int \text{ cos  2x  dx } \right\}dx\]
\[ = x^2 \cdot \frac{\sin 2x}{2} - \int\frac{2x \times \sin 2x}{2} dx\]
\[ = \frac{x^2 \cdot \sin 2x}{2} - \int x_I \cdot \sin_{II} 2x\text{  dx }\]
\[ = \frac{x^2 \cdot \sin 2x}{2} - \left[ x\int \text{ sin 2x dx }- \int\left\{ \frac{d}{dx}\left( x \right)\int\text{ sin 2x dx} \right\}dx \right]\]
\[ = \frac{x^2 \cdot \sin 2x}{2} - \left[ x\left( \frac{- \cos 2x}{2} \right) - \int1 \cdot \left( \frac{- \cos 2x}{2} \right) dx \right]\]
\[ = \frac{x^2 \cdot \sin 2x}{2} + \frac{x \cdot \cos 2x}{2} - \frac{\sin 2x}{4} . . . \left( 2 \right)\]
\[\text{ From }\left( 1 \right) \text{ and }\left( 2 \right)\]
\[ \therefore I = \frac{\sin 2x}{2} + \frac{x^2 \sin 2x}{2} + \frac{x \cos 2x}{2} - \frac{\sin 2x}{4} + C\]
\[ = \left( x^2 + 1 \right) \frac{\sin 2x}{2} + \frac{x \cos 2x}{2} - \frac{\sin 2x}{4} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 91 | पृष्ठ २०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]

\[\int\frac{\cos x}{1 + \cos x} dx\]

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

\[\int \cot^5 x  \text{ dx }\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int x \cos^2 x\ dx\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×