हिंदी

∫ X √ X 2 + 6 X + 10 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]
योग

उत्तर

 

\[\text{ Let I }= \int\frac{x dx}{\sqrt{x^2 + 6x + 10}}\]
\[x = \text{ A  }\frac{d}{dx} \left( x^2 + 6x + 10 \right) + B\]
\[x = A \left( 2x + 6 \right) + B\]
\[x = \left( 2A \right) x + 6A + B\]
\[\text{Equating Coefficients of like terms}\]
\[2A = 1\]
\[A = \frac{1}{2}\]
\[6A + B = 0\]
\[6 \times \frac{1}{2} + B = 0\]
\[B = - 3\]
`  I  =  ∫  {x     dx}/{\sqrt{x^2 + 6x + 10}} `
\[ = \int\left( \frac{\frac{1}{2} \left( 2x + 6 \right) - 3}{\sqrt{x^2 + 6x + 10}} \right)dx\]
\[ = \frac{1}{2}\int\frac{\left( 2x + 6 \right) dx}{\sqrt{x^2 + 6x + 10}} - 3\int\frac{dx}{\sqrt{x^2 + 6x + 3^2 - 3^2 + 10}}\]
\[ = \frac{1}{2}\int\frac{\left( 2x + 6 \right) dx}{\sqrt{x^2 + 6x + 10}} - 3\int\frac{dx}{\sqrt{\left( x + 3 \right)^2 + 1^2}}\]
\[\text{ let x }^2 + 6x + 10 = t\]
\[ \Rightarrow \left( 2x + 6 \right) dx = dt\]
\[I = \frac{1}{2}\int\frac{dt}{\sqrt{t}} - 3\int\frac{dx}{\sqrt{\left( x + 3 \right)^2 + 1}}\]
\[ = \frac{1}{2} \times 2\sqrt{t} - 3 \text{ log }\left| x + 3 + \sqrt{\left( x + 3 \right)^2 + 1} \right| + C\]
\[ = \sqrt{t} - 3 \text{ log }\left| x + 3 + \sqrt{x^2 + 6x + 10} \right| + C\]
\[ = \sqrt{x^2 + 6x + 10} - 3 \text{ log } \left| x + 3 + \sqrt{x^2 + 6x + 10} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.21 [पृष्ठ ११०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.21 | Q 1 | पृष्ठ ११०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{1}{1 - \cos x} dx\]

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]

\[\int x e^{2x} \text{ dx }\]

\[\int x^3 \cos x^2 dx\]

\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]


\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int \tan^3 x\ \sec^4 x\ dx\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×