हिंदी

∫ 2 X + 1 √ X 2 + 2 X − 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]
योग

उत्तर

\[\text{ Let I } = \int\frac{\left( 2x + 1 \right) dx}{\sqrt{x^2 + 2x - 1}}\]
\[ = \int\frac{\left( 2x + 2 - 1 \right) dx}{\sqrt{x^2 + 2x - 1}}\]
\[ = \int\frac{\left( 2x + 2 \right) dx}{\sqrt{x^2 + 2x - 1}} - \int\frac{dx}{\sqrt{x^2 + 2x - 1}}\]
\[ = \int\frac{\left( 2x + 2 \right) dx}{\sqrt{x^2 + 2x - 1}} - \int\frac{dx}{\sqrt{x^2 + 2x + 1 - 1 - 1}}\]
\[ = \int\frac{\left( 2x + 2 \right) dx}{\sqrt{x^2 + 2x - 1}} - \int\frac{dx}{\sqrt{\left( x + 1 \right)^2 - \left( \sqrt{2} \right)^2}}\]
\[\text{ let x}^2 + 2x - 1 = t\]
\[ \Rightarrow \left( 2x + 2 \right) dx = dt\]
\[I = \int\frac{dt}{\sqrt{t}} - \int\frac{dx}{\sqrt{\left( x + 1 \right)^2 - \left( \sqrt{2} \right)^2}}\]
\[ = 2\sqrt{t} - \text{ log} \left| x + 1 + \sqrt{\left( x + 1 \right)^2 - \left( \sqrt{2} \right)^2} \right| + C\]
\[ = 2\sqrt{x^2 + 2x - 1} - \text{ log }\left| x + 1 + \sqrt{x^2 + 2x - 1} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.21 [पृष्ठ ११०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.21 | Q 2 | पृष्ठ ११०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

` ∫   tan   x   sec^4  x   dx  `


\[\int \sin^5 x \text{ dx }\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int e^\sqrt{x} \text{ dx }\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to

\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int \tan^{- 1} \sqrt{x}\ dx\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×