हिंदी

∫ 2 Tan X + 3 3 Tan X + 4 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]
योग

उत्तर

\[\text{ Let I = } \int\left( \frac{2 \tan x + 3}{3 \tan x + 4} \right)dx\]
\[ = \int\left( \frac{\frac{2 \sin x}{\cos x} + 3}{\frac{3 \sin x}{\cos x} + 4} \right)dx\]
\[ = \int\left( \frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} \right)dx\]
\[\text{ Let }\left( 2 \sin x + 3 \cos x \right) = A \left( 3 \sin x + 4 \cos x \right) + B \left( 3 \cos x - 4 \sin x \right) . . . . (1) \]
\[ \Rightarrow 2 \sin x + 3 \cos x = \left( 3A - 4B \right) \sin x + \left( 4A + 3B \right) \cos x\]
\[\text{Equating the coefficients of like terms}\]
\[3A - 4B = 2 . . . \left( 2 \right)\]
\[4A + 3B = 3 . . . \left( 3 \right)\]

Multiplying equation (2) by 3 and equation (3) by 4 ,then by adding them we get

  9A     -     12B   =   6 

16A   +    12B  =     12
_________________________

            25 A   = 18

 

` ⇒ A = 18/25 `
\[\text{ Putting  value of  A in  eq } \left( 2 \right) \text{   we get,} \]
\[ \Rightarrow B = \frac{1}{25}\]

\[\text{Thus, by substituting the values of A and B in eq (1) we get}, \]
\[I = \int\left\{ \frac{\frac{18}{25} \left( 3 \sin x + 4 \cos x \right) + \frac{1}{25}\left( 3 \cos x - 4 \sin x \right)}{3 \sin x + 4 \cos x} \right\}dx\]
\[ = \frac{18}{25}\int dx + \frac{1}{25}\int\left( \frac{3 \cos x - 4 \sin x}{3 \sin x + 4 \cos x} \right)dx\]
\[\text{ Putting 3 sin x + 4 cos x = t }\]
\[ \Rightarrow \left( 3 \cos x - 4 \sin x \right)dx = dt\]
\[ \therefore I = \frac{18}{25}x + \frac{1}{25}\int\frac{1}{t}dt\]
\[ = \frac{18x}{25} + \frac{1}{25} \text{ ln }\left| t \right| + C\]
\[ = \frac{18x}{25} + \frac{1}{25} \text{ ln }\left| 3 \sin x + 4 \cos\ x \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.24 [पृष्ठ १२२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.24 | Q 8 | पृष्ठ १२२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int x^3 \cos x^4 dx\]

\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int2 x^3 e^{x^2} dx\]

\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{x^3 - 1}{x^3 + x} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int x^3 \left( \log x \right)^2\text{  dx }\]

\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×