Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I } = \int\frac{\sin^2 x}{\cos^6 x}dx\]
\[ = \int\frac{\sin^2 x}{\cos^2 x \cdot \cos^4 x}\text{ dx }\]
\[ = \int \tan^2 x \cdot \sec^4 \text{ x dx}\]
\[ = \int \tan^2 x \sec^2 x \cdot \sec^2 \text{ x dx}\]
\[ = \int \tan^2 x \left( 1 + \tan^2 x \right) \sec^2 \text{ x dx }\]
\[\text{ Putting tan x = t }\]
\[ \Rightarrow \sec^2 \text{ x dx = dt}\]
\[ \therefore I = \int t^2 \left( 1 + t^2 \right)dt\]
\[ = \int\left( t^2 + t^4 \right)dt\]
\[ = \frac{t^3}{3} + \frac{t^5}{5} + C\]
\[ = \frac{1}{3} \tan^3 x + \frac{1}{5} \tan^5 x + C............. \left[ \because t = \tan x \right]\]
APPEARS IN
संबंधित प्रश्न
If f' (x) = x + b, f(1) = 5, f(2) = 13, find f(x)
`∫ cos ^4 2x dx `
` = ∫1/{sin^3 x cos^ 2x} dx`
` ∫ {x-3} /{ x^2 + 2x - 4 } dx `
\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]
\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]
Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .