हिंदी

∫ Sin 2 X Cos 6 X Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]
योग

उत्तर

\[\text{ Let  I } = \int\frac{\sin^2 x}{\cos^6 x}dx\]
\[ = \int\frac{\sin^2 x}{\cos^2 x \cdot \cos^4 x}\text{ dx }\]
\[ = \int \tan^2 x \cdot \sec^4 \text{ x  dx}\]
\[ = \int \tan^2 x \sec^2 x \cdot \sec^2 \text{  x  dx}\]
\[ = \int \tan^2 x \left( 1 + \tan^2 x \right) \sec^2 \text{ x  dx }\]
\[\text{ Putting tan x = t }\]
\[ \Rightarrow \sec^2 \text{ x  dx = dt}\]
\[ \therefore I = \int t^2 \left( 1 + t^2 \right)dt\]
\[ = \int\left( t^2 + t^4 \right)dt\]
\[ = \frac{t^3}{3} + \frac{t^5}{5} + C\]
\[ = \frac{1}{3} \tan^3 x + \frac{1}{5} \tan^5 x + C............. \left[ \because t = \tan x \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 79 | पृष्ठ २०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]

If f' (x) = x + bf(1) = 5, f(2) = 13, find f(x)


`∫     cos ^4  2x   dx `


\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

` = ∫1/{sin^3 x cos^ 2x} dx`


\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int \sin^3 \sqrt{x}\ dx\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int \cot^4 x\ dx\]

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×