हिंदी

∫ Sin 3 √ X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \sin^3 \sqrt{x}\ dx\]
योग

उत्तर

\[\text{ Let, }I = \int \sin^3 \sqrt{x} dx . . . . . \left( 1 \right)\]
\[\text{ Consider,} \sqrt{x} = t . . . . . \left( 2 \right)\]
\[\text{Differentiating both sides we get}, \]
\[\frac{1}{2\sqrt{x}}dx = dt\]
\[ \Rightarrow dx = 2\sqrt{x} \text{ dt }\]
\[ \Rightarrow dx = \text{ 2t dt }\]
\[\text{ Therefore,} \left( 1 \right) \text{ becomes,} \]
\[I = \int \sin^3 t \text{ 2t dt }\]
\[ = 2\int t \sin^3 \text{ t dt }\]
\[ = 2\int t \left( \frac{3\sin t - \sin 3t}{4} \right) dt \left( \text{ Since, }\sin 3A = 3\sin A - 4 \sin^3 A \right)\]
\[ = \frac{3}{2}\int \text{ t sin  t dt } - \frac{1}{2}\int t \text{ sin 3t dt }\]
\[ = \frac{3}{2}\left[ t\int\text{ sin t   dt }- \int\left( \frac{d t}{d t}\int\text{ sin t dt } \right)dt \right] - \frac{1}{2}\left[ t\int \text{ sin  3t  dt }- \int\left( \frac{d t}{d t}\int\text{ sin  3t  dt } \right)dt \right]\]
\[ = \frac{3}{2}\left[ - \text{ t cos t } + \int\text{ cos t   dt }\right] - \frac{1}{2}\left[ - \frac{t \cos  3t}{3} + \frac{1}{3}\int\text{ cos 3t dt }\right]\]
\[ = \frac{3}{2}\left[ - t \cos t + \sin t \right] - \frac{1}{2}\left[ - \frac{t \cos3t}{3} + \frac{1}{9}\text{ sin 3t }\right] + C\]
\[ = - \frac{3}{2}t \cos t + \frac{3}{2}\sin t + \frac{1}{6}t \text{ cos 3t} - \frac{1}{18}\text{ sin 3t} + C\]
\[ = - \frac{3}{2}\sqrt{x}\cos\sqrt{x} + \frac{3}{2}\sin\sqrt{x} + \frac{1}{6}\sqrt{x}\cos\left( 3\sqrt{x} \right) - \frac{1}{18}\sin\left( 3\sqrt{x} \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.25 | Q 53 | पृष्ठ १३४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]

Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int \cos^2 \frac{x}{2} dx\]

 


\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int x^3 \text{ log x dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int2 x^3 e^{x^2} dx\]

\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

\[\int \cos^3 (3x)\ dx\]

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int \log_{10} x\ dx\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×