हिंदी

∫ 1 X [ 6 ( Log X ) 2 + 7 Log X + 2 ] D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]
योग

उत्तर

We have,

\[I = \int\frac{dx}{x \left\{ 6 \left( \log x \right)^2 + 7 \log x + 2 \right\}}\]

Putting `log x = t`

\[ \Rightarrow \frac{1}{x} dx = dt\]

\[ \therefore I = \int\frac{dt}{6 t^2 + 7t + 2}\]

\[ = \int\frac{dt}{\left( 3t + 2 \right) \left( 2t + 1 \right)}\]

\[\text{Let }\frac{1}{\left( 3t + 2 \right) \left( 2t + 1 \right)} = \frac{A}{3t + 2} + \frac{B}{2t + 1}\]

\[ \Rightarrow \frac{1}{\left( 3t + 2 \right) \left( 2t + 1 \right)} = \frac{A \left( 2t + 1 \right) + B \left( 3t + 2 \right)}{\left( 3t + 2 \right) \left( 2t + 1 \right)}\]

\[ \Rightarrow 1 = A \left( 2t + 1 \right) + B \left( 3t + 2 \right)\]

Putting `2t + 1 = 0`

\[ \Rightarrow t = - \frac{1}{2}\]

\[1 = 0 + B \left( 3 \times - \frac{1}{2} + 2 \right)\]

\[ \Rightarrow 1 = B \left( \frac{1}{2} \right)\]

\[ \Rightarrow B = 2\]

Putting `3t + 2 = 0`

\[ \Rightarrow t = - \frac{2}{3}\]

\[1 = A \left( 2 \times - \frac{2}{3} + 1 \right) + 0\]

\[ \Rightarrow 1 = A \left( - \frac{4}{3} + 1 \right)\]

\[ \Rightarrow 1 = A \left( - \frac{1}{3} \right)\]

\[ \Rightarrow A = - 3\]

\[ \therefore I = \int\left( - \frac{3}{3t + 2} + \frac{2}{2t + 1} \right)dt\]

\[ = - 3 \frac{\log \left| 3t + 2 \right|}{3} + 2 \frac{\log \left| 2t + 1 \right|}{2} + C\]

\[ = - \log \left| 3t + 2 \right| + \log \left| 2t + 1 \right| + C\]

\[ = \log \left| \frac{2t + 1}{3t + 2} \right| + C\]

\[ = \log \left| \frac{2 \log x + 1}{3 \log x + 2} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.30 | Q 22 | पृष्ठ १७७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int \left( \tan x + \cot x \right)^2 dx\]

\[\int\frac{1}{1 - \cos x} dx\]

\[\int \cos^{- 1} \left( \sin x \right) dx\]

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

` ∫   cos  3x   cos  4x` dx  

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int x \cos x\ dx\]

\[\int x^2 \text{ cos x dx }\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×