Advertisements
Advertisements
प्रश्न
` ∫ cos 3x cos 4x` dx
योग
उत्तर
\[\int\text{cos 4x }\text{cos 3x dx}\]
` = 1/2 ∫ 2 cos 4x cos 3x dx `
\[ = \frac{1}{2}\int\left[ \text{cos} \left( 4x + 3x \right) + \text{cos }\left( 4x - 3x \right) \right]dx \left[ \therefore \text{2 }\text{cos A }\text{cos B} = \text{cos} \left( A + B \right) + \text{cos }\left( A - B \right) \right]\]
\[ = \frac{1}{2}\int\left( \text{cos} \left( 7x \right) + \text{cos x} \right) dx\]
\[ = \frac{1}{2}\left[ \frac{\sin 7x}{7} + \sin x \right] + C\]
\[ = \frac{1}{14}\sin 7x + \frac{1}{2}\sin x + C\]
\[ = \frac{1}{2}\int\left[ \text{cos} \left( 4x + 3x \right) + \text{cos }\left( 4x - 3x \right) \right]dx \left[ \therefore \text{2 }\text{cos A }\text{cos B} = \text{cos} \left( A + B \right) + \text{cos }\left( A - B \right) \right]\]
\[ = \frac{1}{2}\int\left( \text{cos} \left( 7x \right) + \text{cos x} \right) dx\]
\[ = \frac{1}{2}\left[ \frac{\sin 7x}{7} + \sin x \right] + C\]
\[ = \frac{1}{14}\sin 7x + \frac{1}{2}\sin x + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{1}{1 - \sin x} dx\]
\[\int\frac{\tan x}{\sec x + \tan x} dx\]
\[\int \tan^2 \left( 2x - 3 \right) dx\]
\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]
\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]
\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]
\[\int \sin^5\text{ x }\text{cos x dx}\]
\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]
\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]
\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]
\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]
\[\int\frac{x^2}{x^6 + a^6} dx\]
\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]
` ∫ \sqrt{"cosec x"- 1} dx `
\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]
\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]
\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]
\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]
\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]
\[\int2 x^3 e^{x^2} dx\]
\[\int x^2 \sin^{- 1} x\ dx\]
\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx }\]
\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{1}{x^4 - 1} dx\]
\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{ dx }\]
\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]
\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]
\[\int\sqrt{\frac{x}{1 - x}} dx\] is equal to
\[\int \sec^2 x \cos^2 2x \text{ dx }\]
\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]
\[\int\text{ cos x cos 2x cos 3x dx}\]
\[\int \cos^5 x\ dx\]
\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]
\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]
\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]
\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int x^2 \tan^{- 1} x\ dx\]
\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]
\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]