Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I }= \int\left( \frac{x + 1}{\sqrt{x^2 + 1}} \right) dx\]
` = ∫ {x dx}/{\sqrt{x^2 + 1}} + ∫ {dx}/{\sqrt{x^2 + 1}}`
\[\text{ Putting, x }^2 + 1 = t\]
\[ \Rightarrow \text{ 2x dx } = dt\]
\[ \Rightarrow \text{ x dx }= \frac{dt}{2}\]
\[\text{ Then,} \]
\[I = \frac{1}{2}\int\frac{dt}{\sqrt{t}} + \int\frac{dx}{\sqrt{x^2 + 1}}\]
\[ = \frac{1}{2}\int t^{- \frac{1}{2}} dt + \int\frac{dx}{\sqrt{x^2 + 1}}\]
\[ = \frac{1}{2} \left[ \frac{t^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} \right] + \text{ log }\left| x + \sqrt{x^2 + 1} \right| + C\]
\[ = \sqrt{t} + \text{ log }\left| x + \sqrt{x^2 + 1} \right| + C\]
\[ = \sqrt{x^2 + 1} + \text{ log }\left| x + \sqrt{x^2 + 1} \right| + C\]
APPEARS IN
संबंधित प्रश्न
` ∫ {sin 2x} /{a cos^2 x + b sin^2 x } ` dx
` ∫ \sqrt{tan x} sec^4 x dx `
` ∫ {x-3} /{ x^2 + 2x - 4 } dx `
\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then
\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]