Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I } = \int\frac{x^2 \left( x^4 + 4 \right)}{\left( x^2 + 4 \right)} dx\]
\[ = \int\left( \frac{x^6 + 4 x^2}{x^2 + 4} \right) dx\]
\[\text{ Now }, \]
\[\text{ Therefore }, \frac{x^2 \left( x^4 + 4 \right)}{\left( x^2 + 4 \right)} = \left( x^4 - 4 x^2 + 20 \right) - \frac{80}{x^2 + 4}\]
\[I = \int\frac{x^2 \left( x^4 + 4 \right)}{\left( x^2 + 4 \right)} dx\]
\[ = \int\left( x^4 - 4 x^2 + 20 \right) dx - 80\int\frac{dx}{x^2 + 2^2}\]
\[ = \int x^4 dx - 4\int x^2 dx + 20\int dx - 80\int\frac{dx}{x^2 + 2^2}\]
\[ = \frac{x^{4 + 1}}{4 + 1} - 4 \left[ \frac{x^3}{3} \right] + 20 \left( x \right) - 80 \times \frac{1}{2} \text{ tan }^{- 1} \left( \frac{x}{2} \right) + C\]
\[ = \frac{x^5}{5} - \frac{4}{3} x^3 + 20x - 40 \text{ tan }^{- 1} \left( \frac{x}{2} \right) + C\]
APPEARS IN
संबंधित प्रश्न
\[\int\sqrt{x}\left( 3 - 5x \right) dx\]
` ∫ {sec x "cosec " x}/{log ( tan x) }` dx
` ∫ {x-3} /{ x^2 + 2x - 4 } dx `
\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]
Evaluate the following integral:
If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]
The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]