हिंदी

∫ X 3 + X 2 + 2 X + 1 X 2 − X + 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]
योग

उत्तर

\[\text{ Let } I = \int\left( \frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1} \right) dx\]

\[\text{ Therefore }, \]
\[\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1} = x + 2 + \frac{3x - 1}{x^2 - x + 1} . . . . . \left( 1 \right)\]
\[\text{ Let }\]
\[3x - 1 = A\frac{d}{dx} \left( x^2 - x + 1 \right) + B\]
\[3x - 1 = A \left( 2x - 1 \right) + B\]
\[3x - 1 = \left( 2A \right) x + B - A\]
\[ \text{Equating  Coefficients  of  like } terms\]
\[2A = 3\]
\[A = \frac{3}{2}\]
\[B - A = - 1\]
\[B - \frac{3}{2} = - 1\]
\[B = \frac{1}{2}\]
\[\int\left( \frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1} \right) dx = \int\left( x + 2 \right) dx + \int\left( \frac{\frac{3}{2} \left( 2x - 1 \right) + \frac{1}{2}}{x^2 - x + 1} \right) dx\]


\[ = \int\left( x + 2 \right) dx + \frac{3}{2} \int\left( \frac{2x - 1}{x^2 - x + 1} \right) dx + \frac{1}{2}\int\frac{dx}{x^2 - x + 1}\]
\[ = \int\left( x + 2 \right) dx + \frac{3}{2}\int\frac{\left( 2x - 1 \right) dx}{x^2 - x + 1} + \frac{1}{2}\int\frac{dx}{x^2 - x + \frac{1}{4} - \frac{1}{4} + 1}\]
\[ = \int\left( x + 2 \right) dx + \frac{3}{2}\int\frac{\left( 2x - 1 \right) dx}{x^2 - x + 1} + \frac{1}{2}\int\frac{dx}{\left( x - \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2}\]
\[ = \frac{x^2}{2} + 2x + \frac{3}{2} \text{ log }\left| x^2 - x + 1 \right| + \frac{1}{2} \times \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{x - \frac{1}{2}}{\frac{\sqrt{3}}{2}} \right) + C\]
\[ = \frac{x^2}{2} + 2x + \frac{3}{2} \text{ log } \left| x^2 - x + 1 \right| + \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{2x - 1}{\sqrt{3}} \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.2 [पृष्ठ १०६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.2 | Q 8 | पृष्ठ १०६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\sqrt{x}\left( 3 - 5x \right) dx\]

 


\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int\frac{1}{1 - \cos 2x} dx\]

\[\int\frac{1 + \cos x}{1 - \cos x} dx\]

\[\int\frac{x^3}{x - 2} dx\]

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]

\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


` ∫      tan^5    x   dx `


\[\int \cot^5 x  \text{ dx }\]

\[\int \sin^7 x  \text{ dx }\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]

\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]

\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×