हिंदी

∫ ( X − 1 ) 2 X 2 + 2 X + 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]
योग

उत्तर

\[\text{ Let } I = \int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]
\[ = \int\left( \frac{x^2 - 2x + 1}{x^2 + 2x + 2} \right) dx\]
\[\text{ Here }, \]



\[\text{ Thereforez }, \]
\[\frac{x^2 - 2x + 1}{x^2 + 2x + 2} = 1 - \frac{\left( 4x + 1 \right)}{x^2 + 2x + 2} . . . . . \left( 1 \right)\]
\[\text{ Let } 4x + 1 = A\frac{d}{dx} \left( x^2 + 2x + 2 \right) + B\]
\[4x + 1 = A \left( 2x + 2 \right) + B\]
\[4x + 1 = \left( 2A \right) x + 2A + B\]
\[  \text{ Equating Coefficients   of  like terms }\]
\[\text{ 2A = 4 }\]
\[A = 2\]
\[2A + B = 1\]
\[2 \times 2 + B = 1\]
\[B = - 3\]
\[\int\left( \frac{x^2 - 2x + 1}{x^2 + 2x + 2} \right) dx\]
\[ = \int dx - 2\int\frac{\left( 2x + 2 \right)}{x^2 + 2x + 2} dx + 3\int\frac{dx}{x^2 + 2x + 2}\]


\[ = \int dx - 2\int\frac{\left( 2x + 2 \right)}{x^2 + 2x + 2} dx + 3\int\frac{dx}{\left( x + 1 \right)^2 + 1^2}\]
\[ = x - 2 \text{ log } \left| x^2 + 2x + 2 \right| + \frac{3}{1} \tan^{- 1} \left( \frac{x + 1}{1} \right) + C\]
\[ = x - 2 \text { log } \left| x^2 + 2x + 2 \right| + 3 \tan^{- 1} \left( x + 1 \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.2 [पृष्ठ १०६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.2 | Q 7 | पृष्ठ १०६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int\frac{\cos x}{1 + \cos x} dx\]

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]

\[\int\sqrt {e^x- 1}  \text{dx}\] 

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{dx}{e^x + e^{- x}}\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int\frac{\log \left( \log x \right)}{x} dx\]

\[\int {cosec}^3 x\ dx\]

\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

 
` ∫  x tan ^2 x dx 

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int x \sin^3 x\ dx\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int \sin^5 x\ dx\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×