Advertisements
Advertisements
प्रश्न
विकल्प
\[2\left( \sin x + x\cos\theta \right) + C\]
- \[2\left( \sin x - x\cos\theta \right) + C\]
\[2\left( \sin x + 2x\cos\theta \right) + C\]
- \[2\left( \sin x - 2x\cos\theta \right) + C\]
उत्तर
\[2\left( \sin x + x\cos\theta \right) + C\]
\[\text{Let }I = \int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\]
\[ = \int\frac{\left( 2 \cos^2 x - 1 \right) - \left( 2 \cos^2 \theta - 1 \right)}{\cos x - \cos\theta}dx\]
\[ = \int\frac{2 \cos^2 x - 1 - 2 \cos^2 \theta + 1}{\cos x - \cos\theta}dx\]
\[ = \int\frac{2\left( \cos x - \cos\theta \right)\left( \cos x + \cos\theta \right)}{\cos x - \cos\theta}dx\]
\[ = \int2\left( \cos x + \cos\theta \right)dx\]
\[ = 2\left( \sin x + x\cos\theta \right) + C\]
\[\text{Therefore, }\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx = 2\left( \sin x + x\cos\theta \right) + C\]
APPEARS IN
संबंधित प्रश्न
If f' (x) = x − \[\frac{1}{x^2}\] and f (1) \[\frac{1}{2}, find f(x)\]
\[\int \tan^2 \left( 2x - 3 \right) dx\]
`∫ cos ^4 2x dx `
\[\int\text{ cos x cos 2x cos 3x dx}\]
Find : \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\]