हिंदी

∫ Cos 2 X − Cos 2 θ Cos X − Cos θ D X is Equal to - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

विकल्प

  • \[2\left( \sin x + x\cos\theta \right) + C\]

  • \[2\left( \sin x - x\cos\theta \right) + C\]
  • \[2\left( \sin x + 2x\cos\theta \right) + C\]

  • \[2\left( \sin x - 2x\cos\theta \right) + C\]
MCQ

उत्तर

\[2\left( \sin x + x\cos\theta \right) + C\]

 

\[\text{Let }I = \int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\]

\[ = \int\frac{\left( 2 \cos^2 x - 1 \right) - \left( 2 \cos^2 \theta - 1 \right)}{\cos x - \cos\theta}dx\]

\[ = \int\frac{2 \cos^2 x - 1 - 2 \cos^2 \theta + 1}{\cos x - \cos\theta}dx\]

\[ = \int\frac{2\left( \cos x - \cos\theta \right)\left( \cos x + \cos\theta \right)}{\cos x - \cos\theta}dx\]

\[ = \int2\left( \cos x + \cos\theta \right)dx\]

\[ = 2\left( \sin x + x\cos\theta \right) + C\]

\[\text{Therefore, }\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx = 2\left( \sin x + x\cos\theta \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - MCQ [पृष्ठ २०२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
MCQ | Q 31 | पृष्ठ २०२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


\[\int \tan^2 \left( 2x - 3 \right) dx\]


\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

`∫     cos ^4  2x   dx `


\[\int \sin^2 \frac{x}{2} dx\]

\[\int\frac{a}{b + c e^x} dx\]

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

`int 1/(cos x - sin x)dx`

\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]

`int"x"^"n"."log"  "x"  "dx"`

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]

\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×