Advertisements
Advertisements
प्रश्न
\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]
योग
उत्तर
\[\text{ Let I} = \int\frac{\log \left( \log x \right) dx}{x}\]
\[\text{ Putting log x = t}\]
\[ \Rightarrow \frac{1}{x} dx = dt\]
\[ \therefore I = \int 1_{II} \cdot \log _I t \cdot \text{ dt}\]
\[ = \log t\int1\text{ dt }- \int\left\{ \frac{d}{dt}\left( \log t \right)\int1 dt \right\}dt\]
\[ = \log t \cdot t - \int\frac{1}{t} \times t\text{ dt}\]
\[ = \log t \cdot t - \int dt\]
\[ = \log t \cdot t - t + C\]
\[ = t \left( \log t - 1 \right) + C\]
\[ = \log x \left( \text{ log} \left( \log x \right) - 1 \right) + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{1 - \cot x}{1 + \cot x} dx\]
\[\int\sqrt{1 + e^x} . e^x dx\]
\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]
` ∫ tan^3 x sec^2 x dx `
\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]
\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]
\[\int\frac{1}{\sqrt{2x - x^2}} dx\]
\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]
\[\int\frac{x}{x^2 + 3x + 2} dx\]
\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]
\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]
\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]
\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]
\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]
\[\int\frac{1}{1 - \tan x} \text{ dx }\]
\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]
\[\int \log_{10} x\ dx\]
\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]
\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]
\[\int e^x \sec x \left( 1 + \tan x \right) dx\]
\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]
\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx }\]
\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]
\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]
\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]
\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]
\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]
\[\int\frac{1}{\sin x + \sin 2x} dx\]
Write the anti-derivative of \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]
\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to
\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]
\[\int\sin x \sin 2x \text{ sin 3x dx }\]
\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]
\[\int \sin^5 x\ dx\]
\[\int\frac{1}{a + b \tan x} \text{ dx }\]
\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]
\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]
\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]