Advertisements
Advertisements
प्रश्न
विकल्प
` log tan (x/3 + π / 2) + C `
\[\text{ log tan} \left( \frac{x}{2} - \frac{\pi}{3} \right) + C\]
` 1/2 log tan (x/2 + π /3 ) + C `
none of these
उत्तर
none of these
\[\int\frac{1}{\cos x + \sqrt{3}\sin x}dx\]
\[ = \frac{1}{2}\int\frac{dx}{\cos x \times \frac{1}{2} + \sin x \times \frac{\sqrt{3}}{2}}\]
\[ = \frac{1}{2}\int\frac{dx}{\cos x \cdot \cos\frac{\pi}{3} + \sin x \cdot \sin\frac{\pi}{3}}\]
\[ = \frac{1}{2}\int\frac{dx}{\cos \left( x - \frac{\pi}{3} \right)}\]
\[ = \frac{1}{2}\int\sec \left( x - \frac{\pi}{3} \right)dx\]
\[ = \frac{1}{2}\text{ ln }\left| \tan \left\{ \frac{\pi}{4} + \frac{1}{2}\left( x - \frac{\pi}{3} \right) \right\} \right| + C\]
\[ = \frac{1}{2}\text{ ln }\left| \tan \left( \frac{\pi}{4} + \frac{x}{2} - \frac{\pi}{6} \right) \right| + C\]
\[ = \frac{1}{2}\text{ ln }\left| \tan \left( \frac{x}{2} + \frac{\pi}{12} \right) \right| + C\]
APPEARS IN
संबंधित प्रश्न
If f' (x) = x − \[\frac{1}{x^2}\] and f (1) \[\frac{1}{2}, find f(x)\]
If f' (x) = x + b, f(1) = 5, f(2) = 13, find f(x)
` ∫ \sqrt{tan x} sec^4 x dx `
The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]
\[\int \sin^3 \left( 2x + 1 \right) \text{dx}\]