हिंदी

∫ 1 Cos X + √ 3 Sin X D X is Equal to (A) ∫ 1 Cos X + √ 3 Sin X D X (B) Log Tan ( X 2 − π 3 ) + C (C) Log Tan ( X 2 − π 3 ) + C (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

विकल्प

  • `  log   tan (x/3  + π / 2) + C `

  • \[\text{ log  tan}   \left( \frac{x}{2} - \frac{\pi}{3} \right) + C\]

  • `   1/2  log   tan (x/2  + π /3 ) + C `

  • none of these

MCQ

उत्तर

 none of these

 

\[\int\frac{1}{\cos x + \sqrt{3}\sin x}dx\]
\[ = \frac{1}{2}\int\frac{dx}{\cos x \times \frac{1}{2} + \sin x \times \frac{\sqrt{3}}{2}}\]
\[ = \frac{1}{2}\int\frac{dx}{\cos x \cdot \cos\frac{\pi}{3} + \sin x \cdot \sin\frac{\pi}{3}}\]
\[ = \frac{1}{2}\int\frac{dx}{\cos \left( x - \frac{\pi}{3} \right)}\]
\[ = \frac{1}{2}\int\sec \left( x - \frac{\pi}{3} \right)dx\]
\[ = \frac{1}{2}\text{ ln }\left| \tan \left\{ \frac{\pi}{4} + \frac{1}{2}\left( x - \frac{\pi}{3} \right) \right\} \right| + C\]
\[ = \frac{1}{2}\text{ ln  }\left| \tan \left( \frac{\pi}{4} + \frac{x}{2} - \frac{\pi}{6} \right) \right| + C\]
\[ = \frac{1}{2}\text{ ln }\left| \tan \left( \frac{x}{2} + \frac{\pi}{12} \right) \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - MCQ [पृष्ठ १९९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
MCQ | Q 2 | पृष्ठ १९९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

\[\int \left( 3x + 4 \right)^2 dx\]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


If f' (x) = x + bf(1) = 5, f(2) = 13, find f(x)


\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\int\frac{\sec^2 x}{\tan x + 2} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int \sec^4 2x \text{ dx }\]

\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int x^3 \cos x^2 dx\]

\[\int e^\sqrt{x} \text{ dx }\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]

\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×