Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{\left( x^2 - 2x + 4 \right)}dx\]
\[ = \int\frac{\left( x^3 + 2^3 \right) \left( x - 1 \right)}{\left( x^2 - 2x + 4 \right)}dx \]
\[ = \int\frac{\left( x + 2 \right) \left( x^2 - 2x + 4 \right) \left( x - 1 \right)}{\left( x^2 - 2x + 4 \right)} dx \left[ \therefore a^3 + b^3 = \left( a + b \right) \left( a^2 - ab + b^2 \right) \right]\]
\[ = \int \left( x + 2 \right) \left( x - 1 \right)dx\]
\[ = \int\left( x^2 - x + 2x - 2 \right)dx\]
\[ = \int\left( x^2 + x - 2 \right)dx\]
\[ = \int x^2 dx + \text{∫ x dx} - 2 \int1dx\]
\[ = \frac{x^3}{3} + \frac{x^2}{2} - 2x + C\]
APPEARS IN
संबंधित प्रश्न
` ∫ sin x \sqrt (1-cos 2x) dx `
Integrate the following integrals:
Evaluate the following integrals:
If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then