Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\frac{dx}{a^2 x^2 + b^2}\]
\[ = \frac{1}{a^2}\int\frac{dx}{x^2 + \left( \frac{b}{a} \right)^2} \]
\[ = \frac{1}{a^2} \times \frac{a}{b} \tan^{- 1} \left( \frac{x}{\frac{b}{a}} \right) + C \left[ \therefore \int\frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{- 1} \left( \frac{x}{a} \right) + C \right]\]
\[ = \frac{1}{ab} \tan^{- 1} \left( \frac{ax}{b} \right) + C\]
APPEARS IN
संबंधित प्रश्न
` ∫ {sin 2x} /{a cos^2 x + b sin^2 x } ` dx
Evaluate the following integrals:
The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to
\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]
Find : \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\]
\[\int \sin^3 \left( 2x + 1 \right) \text{dx}\]
\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]