हिंदी

∫ 1 a 2 X 2 + B 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{a^2 x^2 + b^2} dx\]
योग

उत्तर

\[\int\frac{dx}{a^2 x^2 + b^2}\]
\[ = \frac{1}{a^2}\int\frac{dx}{x^2 + \left( \frac{b}{a} \right)^2} \]
\[ = \frac{1}{a^2} \times \frac{a}{b} \tan^{- 1} \left( \frac{x}{\frac{b}{a}} \right) + C \left[ \therefore \int\frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{- 1} \left( \frac{x}{a} \right) + C \right]\]
\[ = \frac{1}{ab} \tan^{- 1} \left( \frac{ax}{b} \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.14 [पृष्ठ ८३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.14 | Q 3 | पृष्ठ ८३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int \sin^2\text{ b x dx}\]

\[\int \cos^2 \frac{x}{2} dx\]

 


\[\int\text{sin mx }\text{cos nx dx m }\neq n\]

\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int \left( \log x \right)^2 \cdot x\ dx\]

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

\[\int\frac{1}{7 + 5 \cos x} dx =\]

The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]

\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×