Advertisements
Advertisements
प्रश्न
\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]
योग
उत्तर
\[\text{ Let I }= \int\frac{x^3}{\sqrt{x^8 + 2^2}}dx\]
\[ = \int\frac{x^3}{\sqrt{\left( x^4 \right)^2 + 2^2}}dx\]
\[\text{ Putting x}^4 = t\]
\[ \Rightarrow 4 x^3 \text{ dx }= dt\]
\[ \Rightarrow x^3 \cdot dx = \frac{dt}{4}\]
\[ \therefore I = \frac{1}{4}\int\frac{1}{\sqrt{t^2 + 2^2}}dt\]
\[ = \frac{1}{4} \text{ ln} \left| t + \sqrt{t^2 + 4} \right| + C\]
\[ = \frac{1}{4} \text{ ln }\left| x^4 + \sqrt{x^8 + 4} \right| + C ...........\left[ \because t = x^4 \right]\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]
\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]
\[\int \left( \tan x + \cot x \right)^2 dx\]
` ∫ {cosec x} / {"cosec x "- cot x} ` dx
\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]
` ∫ sin 4x cos 7x dx `
Integrate the following integrals:
\[\int\text { sin x cos 2x sin 3x dx}\]
\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]
\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]
\[\ \int\ x \left( 1 - x \right)^{23} dx\]
\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]
` = ∫1/{sin^3 x cos^ 2x} dx`
\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]
\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]
\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]
\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]
\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]
\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]
\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]
\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]
\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]
\[\int x^2 \text{ cos x dx }\]
`int"x"^"n"."log" "x" "dx"`
\[\int e^\sqrt{x} \text{ dx }\]
\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]
\[\int e^x \sec x \left( 1 + \tan x \right) dx\]
\[\int\sqrt{2x - x^2} \text{ dx}\]
\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]
\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]
\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to
` \int \text{ x} \text{ sec x}^2 \text{ dx is equal to }`
\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]
\[\int\sqrt{\frac{x}{1 - x}} dx\] is equal to
\[\int\frac{1}{1 - x - 4 x^2}\text{ dx }\]
\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]
\[\int\sqrt{3 x^2 + 4x + 1}\text{ dx }\]
\[\int \sec^{- 1} \sqrt{x}\ dx\]
\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]