Advertisements
Advertisements
प्रश्न
\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]
उत्तर
\[\int\left( \frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \right)dx\]
\[\text{ Let sin x + 2 cos x = A } \frac{d}{dx} \left( \text{ 2 sin x + cos x} \right) + \text{ B }\left( \text{ 2 sin x + cos x} \right)\]
\[ \Rightarrow \sin x + 2 \cos x = A \left( 2 \cos x - \sin x \right) + \text{ 2 B sin x + B cos x}\]
\[ \Rightarrow \sin x + 2 \cos x = \left( \text{ 2 A + B }\right) \cos x + \left( 2 B - A \right) \sin x\]
\[\text{Equating coefficients of like terms}\]
\[ \Rightarrow \text{ 2 A + B = 2} . . . \left( 1 \right)\]
\[ \Rightarrow - A + 2B = 1 . . . \left( 2 \right)\]
\[\text{Multiplying eq} \left( 2 \right) \text{by 2 and adding it to eq} \left( 1 \right) \text{we get}, \]
\[\text{ 5 B = 4 }\]
\[ \Rightarrow B = \frac{4}{5}\]
\[\text{ Putting B }= \frac{4}{5} \text{ in eq }\left( 1 \right) \text{ we get,} \]
\[2 A + \frac{4}{5} = 2\]
\[ \Rightarrow A = \frac{3}{5}\]
\[ \therefore \int\left( \frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \right)dx = \int\left[ \frac{\frac{3}{5} \left( 2 \cos x - \sin x \right)}{2 \sin x + \cos x} \right]dx + \frac{4}{5}\int\frac{\left( 2 \sin x + \cos x \right)}{\left( 2 \sin x + \cos x \right)}dx\]
\[ = \frac{3}{5}\int\left( \frac{2 \cos x - \sin x}{2 \sin x + \cos x} \right)dx + \frac{4}{5}\int dx\]
\[\text{ Putting 2 sin x + cos x = t }\]
\[ \Rightarrow \left( 2 \cos x - \sin x \right) dx = dt\]
\[ \therefore I = \frac{3}{5}\int\frac{dt}{t} + \frac{4}{5}\int dx\]
\[ = \frac{3}{5} \text{ ln }\left| t \right| + \frac{4x}{5} + C\]
\[ = \frac{3}{5} \text{ ln } \left| 2 \sin x + \cos x \right| + \frac{4x}{5} + C ...............\left[ \because t = 2 \sin x + \cos x \right]\]
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
`(log x)^2/x`
Integrate the functions:
`1/(cos^2 x(1-tan x)^2`
Integrate the functions:
`cos sqrt(x)/sqrtx`
Integrate the functions:
`sin x/(1+ cos x)`
`int (dx)/(sin^2 x cos^2 x)` equals:
Evaluate: `int (2y^2)/(y^2 + 4)dx`
Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]
Write a value of\[\int\left( e^{x \log_e \text{ a}} + e^{a \log_e x} \right) dx\] .
Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]
Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`
Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`
Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`
Integrate the following functions w.r.t. x : `cosx/sin(x - a)`
Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`
Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`
Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
Evaluate the following.
∫ (x + 1)(x + 2)7 (x + 3)dx
Evaluate the following.
`int 1/("x"^2 + 4"x" - 5)` dx
Evaluate: `int "e"^sqrt"x"` dx
Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx
`int 1/sqrt((x - 3)(x + 2))` dx = ______.
`int sqrt(x^2 + 2x + 5)` dx = ______________
If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______
`int (sin4x)/(cos 2x) "d"x`
`int ("e"^(2x) + "e"^(-2x))/("e"^x) "d"x`
State whether the following statement is True or False:
`int"e"^(4x - 7) "d"x = ("e"^(4x - 7))/(-7) + "c"`
`int sin^-1 x`dx = ?
`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?
`int sec^6 x tan x "d"x` = ______.
If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.
Evaluate `int(1+ x + x^2/(2!)) dx`
if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate:
`int sqrt((a - x)/x) dx`
Evaluate `int(1+x+(x^2)/(2!))dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate the following.
`int1/(x^2 + 4x - 5)dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).