हिंदी

∫sin4xcos2xdx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

`int (sin4x)/(cos 2x) "d"x`

योग

उत्तर

`int (sin4x)/(cos 2x) "d"x`

= `int (sin2(2x))/(cos2x) "d"x`

= `int (2sin2x cos2x)/(cos 2x) "d"x`

= `2 int sin 2x  "d"x`

= `2*((-cos 2x))/2 + c`

= – cos 2x + c

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.3: Indefinite Integration - Very Short Answers

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`


Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`


Find : `int(x+3)sqrt(3-4x-x^2dx)`


Integrate the functions:

`(x^3 - 1)^(1/3) x^5`


Integrate the functions:

`1/(x(log x)^m),  x > 0, m ne 1`


Integrate the functions:

`x/(9 - 4x^2)`


Integrate the functions:

`(2cosx - 3sinx)/(6cos x + 4 sin x)`


Integrate the functions:

`cos x /(sqrt(1+sinx))`


Integrate the functions:

`(sin x)/(1+ cos x)^2`


\[\int\cos x \sqrt{4 - \sin^2 x}\text{ dx}\]

\[\int\sqrt{4 x^2 - 5}\text{ dx}\]

\[\int\sqrt{2 x^2 + 3x + 4} \text{ dx}\]

Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]


Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]


Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].


Write a value of\[\int e^{ax} \sin\ bx\ dx\]


The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is


Integrate the following w.r.t. x:

`2x^3 - 5x + 3/x + 4/x^5`


Evaluate the following integrals : tan2x dx


Evaluate the following integrals : `int tanx/(sec x + tan x)dx`


Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`


Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`


Integrate the following functions w.r.t.x:

`(2sinx cosx)/(3cos^2x + 4sin^2 x)`


Integrate the following functions w.r.t. x:

`x^5sqrt(a^2 + x^2)`


Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`


Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`


Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`


Evaluate the following : `int (1)/(4 + 3cos^2x).dx`


Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`


Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`


Choose the correct options from the given alternatives :

`int (e^x(x - 1))/x^2*dx` =


Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`


Integrate the following with respect to the respective variable:

`x^7/(x + 1)`


Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`


Evaluate the following.

`int "x" sqrt(1 + "x"^2)` dx


Evaluate the following.

`int (1 + "x")/("x" + "e"^"-x")` dx


Evaluate the following.

`int 1/(sqrt"x" + "x")` dx


Evaluate the following.

`int 1/("x"^2 + 4"x" - 5)` dx


Evaluate the following.

`int 1/(4"x"^2 - 20"x" + 17)` dx


Choose the correct alternative from the following.

`int "x"^2 (3)^("x"^3) "dx"` =


Choose the correct alternative from the following.

`int "dx"/(("x" - "x"^2))`= 


Fill in the Blank.

`int (5("x"^6 + 1))/("x"^2 + 1)` dx = x4 + ______ x3 + 5x + c


Evaluate: `int 1/(sqrt("x") + "x")` dx


Evaluate: `int "x" * "e"^"2x"` dx


`int cos sqrtx` dx = _____________


`int ("e"^(2x) + "e"^(-2x))/("e"^x)  "d"x`


`int(log(logx))/x  "d"x`


`int sin^-1 x`dx = ?


`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.


`int (cos x)/(1 - sin x) "dx" =` ______.


`int[ tan (log x) + sec^2 (log x)] dx= ` ______


`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.


`int sqrt(x^2 - a^2)/x dx` = ______.


Write `int cotx  dx`.


`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`


if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)


Evaluate `int1/(x(x - 1))dx`


`int dx/((x+2)(x^2 + 1))`    ...(given)

`1/(x^2 +1) dx = tan ^-1 + c`


`int x^3 e^(x^2) dx`


Evaluate:

`int 1/(1 + cosα . cosx)dx`


Evaluate:

`int(sqrt(tanx) + sqrt(cotx))dx`


Evaluate:

`int sin^3x cos^3x  dx`


Evaluate the following.

`int x^3/sqrt(1+x^4) dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate `int(5x^2-6x+3)/(2x-3) dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate `int(5x^2-6x+3)/(2x-3)dx`


Evaluate the following.

`intx^3/sqrt(1 + x^4)dx`


Evaluate the following:

`int x^3/(sqrt(1 + x^4)) dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x). 


Evaluate the following.

`intx^3/sqrt(1 + x^4) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×