Advertisements
Advertisements
प्रश्न
Choose the correct alternative from the following.
`int "dx"/(("x" - "x"^2))`=
विकल्प
log x – log (1 – x) + c
log (1 - x2) + c
- log x + log(1 - x) + c
log (x - x2) + c
उत्तर
log x – log (1 – x) + c
Explanation:
Let I = `int "dx"/(("x" - "x"^2))`
`= int 1/("x"(1 - "x"))` dx
`= int ((1 - "x")+"x")/("x"(1 - "x"))` dx
`= int (1/"x" + 1/"1 - x")` dx
`= log |"x"| + (log |1 - "x"|)/-1` + c
= log |x| - log |1 - x| + c
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
`e^(2x+3)`
Integrate the functions:
sec2(7 – 4x)
Integrate the functions:
`(sin^(-1) x)/(sqrt(1-x^2))`
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
Evaluate the following integrals:
`int(2)/(sqrt(x) - sqrt(x + 3)).dx`
Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`
Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`
Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`
Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`
Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`
Evaluate the following integrals:
`int (2x + 1)/(x^2 + 4x - 5).dx`
Evaluate the following.
`int 1/("x" log "x")`dx
`int 2/(sqrtx - sqrt(x + 3))` dx = ________________
Choose the correct alternative:
`int(1 - x)^(-2) dx` = ______.
`int dx/(2 + cos x)` = ______.
(where C is a constant of integration)
`int dx/((x+2)(x^2 + 1))` ...(given)
`1/(x^2 +1) dx = tan ^-1 + c`
Evaluate the following.
`int1/(x^2+4x-5) dx`