Advertisements
Advertisements
प्रश्न
Evaluate the following integrals:
`int(2)/(sqrt(x) - sqrt(x + 3)).dx`
उत्तर
`int(2)/(sqrt(x) - sqrt(x + 3)).dx = int (2)/(sqrt(x) - sqrt(x + 3)) xx (sqrt(x) + sqrt(x + 3))/(sqrt(x) + sqrt(x + 3)).dx`
= `int(2(sqrt(x) + sqrt(x + 3)))/(x - (x + 3)).dx`
= `-(2)/(3) int(sqrt(x) + sqrt(x + 3)).dx`
= `-(2)/(3) int x^(1/2) dx - (2)/(3) int(x + 3)^(1/2).dx`
= `-(2)/(3).(x^(3/2))/((3/2)) - (2)/(3).((x + 3)^(3/2))/((3/2)) + c`
= `-(4)/(9)[x^(3/2) + (x + 3)^(3/2)] + c`
संबंधित प्रश्न
Evaluate : `int(x-3)sqrt(x^2+3x-18) dx`
Find `intsqrtx/sqrt(a^3-x^3)dx`
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Integrate the functions:
`1/(x + x log x)`
Integrate the functions:
sin x ⋅ sin (cos x)
Integrate the functions:
`x/(sqrt(x+ 4))`, x > 0
Integrate the functions:
`e^(2x+3)`
Integrate the functions:
`1/(cos^2 x(1-tan x)^2`
Integrate the functions:
`(1+ log x)^2/x`
Integrate the functions:
`((x+1)(x + logx)^2)/x`
Evaluate: `int 1/(x(x-1)) dx`
Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`
Write a value of
Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]
Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]
Write a value of\[\int e^{ax} \sin\ bx\ dx\]
Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]
Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].
Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]
The value of \[\int\frac{1}{x + x \log x} dx\] is
\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]
Evaluate the following integrals : `int (sin2x)/(cosx)dx`
Evaluate the following integrals : `int sin x/cos^2x dx`
Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`
Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`
Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`
Integrate the following function w.r.t. x:
x9.sec2(x10)
Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`
Integrate the following functions w.r.t.x:
`(5 - 3x)(2 - 3x)^(-1/2)`
Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`
Integrate the following functions w.r.t. x : tan 3x tan 2x tan x
Evaluate the following:
`int (1)/(25 - 9x^2)*dx`
Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`
Evaluate the following.
`int "x" sqrt(1 + "x"^2)` dx
Evaluate the following.
`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
Evaluate the following.
`int 1/(sqrt("x"^2 -8"x" - 20))` dx
`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?
Fill in the Blank.
`int (5("x"^6 + 1))/("x"^2 + 1)` dx = x4 + ______ x3 + 5x + c
State whether the following statement is True or False.
The proper substitution for `int x(x^x)^x (2log x + 1) "d"x` is `(x^x)^x` = t
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
Evaluate: ∫ |x| dx if x < 0
Evaluate: `int 1/(2"x" + 3"x" log"x")` dx
Evaluate: `int "e"^sqrt"x"` dx
Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx
`int 1/(cos x - sin x)` dx = _______________
`int ("e"^x(x - 1))/(x^2) "d"x` = ______
`int ("e"^(3x))/("e"^(3x) + 1) "d"x`
`int x^x (1 + logx) "d"x`
`int 1/(xsin^2(logx)) "d"x`
`int (7x + 9)^13 "d"x` ______ + c
State whether the following statement is True or False:
`int"e"^(4x - 7) "d"x = ("e"^(4x - 7))/(-7) + "c"`
Evaluate `int"e"^x (1/x - 1/x^2) "d"x`
`int sin^-1 x`dx = ?
`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`
`int[ tan (log x) + sec^2 (log x)] dx= ` ______
`int ("d"x)/(x(x^4 + 1))` = ______.
If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.
If f'(x) = `x + 1/x`, then f(x) is ______.
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.
The value of `intsinx/(sinx - cosx)dx` equals ______.
If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.
`int dx/(2 + cos x)` = ______.
(where C is a constant of integration)
Evaluate the following.
`int x^3/(sqrt(1+x^4))dx`
if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate `int (1)/(x(x - 1))dx`
Evaluate `int (1+x+x^2/(2!)) dx`
Evaluate the following
`int x^3/sqrt(1+x^4) dx`
Evaluate:
`int sin^2(x/2)dx`
`int 1/(sin^2x cos^2x)dx` = ______.
Evaluate the following.
`intx sqrt(1 +x^2) dx`
Evaluate:
`int(cos 2x)/sinx dx`
Evaluate the following.
`intxsqrt(1+x^2)dx`
Evaluate `int(1+x+(x^2)/(2!))dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate `int1/(x(x-1))dx`
Evaluate `int(5x^2-6x+3)/(2x-3)dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4)dx`
Evaluate the following:
`int x^3/(sqrt(1 + x^4)) dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate `int1/(x(x - 1))dx`
Evaluate the following.
`int1/(x^2 + 4x-5)dx`