Advertisements
Advertisements
प्रश्न
Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]
उत्तर
\[\text{ Let I } = \int\frac{\left( \sin x + \cos x \right) dx}{\sqrt{1 - \sin 2x}}\]
\[ = \int\frac{\left( \sin x + \cos x \right) dx}{\sqrt{\sin^2 x + \cos^2 x - 2 \sin x \cos x}}\]
\[ = \int\frac{\left( \sin x + \cos x \right) dx}{\sqrt{\left( \sin x - \cos x \right)^2}}\]
\[ = \int\frac{\left( \sin x + \cos x \right) dx}{\left| \sin x - \cos x \right|}\]
\[ = \pm \int\left( \frac{\sin x + \cos x}{\sin x - \cos x} \right)dx\]
\[\text{ Let sin x} - \cos x = t\]
\[ \Rightarrow \left( \cos x + \sin x \right)dx = dt\]
\[ \therefore I = \pm \int\frac{dt}{t}\]
\[ = \pm \text{ ln }\left| t \right| + C\]
\[ = \pm \text{ ln} \left| \sin x - \cos x \right| + C \left( \because t = \sin x - \cos x \right)\]
APPEARS IN
संबंधित प्रश्न
Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`
Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.
Integrate the functions:
`x/(9 - 4x^2)`
Integrate the functions:
cot x log sin x
Write a value of\[\int \cos^4 x \text{ sin x dx }\]
Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].
Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]
Integrate the following w.r.t. x : x3 + x2 – x + 1
Integrate the following w.r.t. x:
`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`
Integrate the following w.r.t. x:
`2x^3 - 5x + 3/x + 4/x^5`
Evaluate the following integrals : `int sinx/(1 + sinx)dx`
Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`
Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`
Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`
Integrate the following function w.r.t. x:
x9.sec2(x10)
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`
Choose the correct options from the given alternatives :
`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =
Choose the correct options from the given alternatives :
`int (e^(2x) + e^-2x)/e^x*dx` =
Evaluate `int 1/("x" ("x" - 1))` dx
Evaluate the following.
`int "x" sqrt(1 + "x"^2)` dx
Evaluate the following.
∫ (x + 1)(x + 2)7 (x + 3)dx
Evaluate the following.
`int 1/("x" log "x")`dx
Evaluate the following.
`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx
Evaluate the following.
`int x/(4x^4 - 20x^2 - 3)dx`
Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx
`int ("e"^x(x - 1))/(x^2) "d"x` = ______
`int1/(4 + 3cos^2x)dx` = ______
`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`
`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
Evaluate the following.
`int 1/(x^2+4x-5) dx`
Evaluate the following.
`int1/(x^2+4x-5) dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate.
`int (5x^2 -6x + 3)/(2x -3)dx`
If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate `int 1/(x(x-1))dx`