मराठी

Write a Value of ∫ Sin X − Cos X √ 1 + Sin 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]

बेरीज

उत्तर

\[\text{ Let I } = \int\frac{\left( \sin x + \cos x \right) dx}{\sqrt{1 - \sin 2x}}\]
\[ = \int\frac{\left( \sin x + \cos x \right) dx}{\sqrt{\sin^2 x + \cos^2 x - 2 \sin x \cos x}}\]
\[ = \int\frac{\left( \sin x + \cos x \right) dx}{\sqrt{\left( \sin x - \cos x \right)^2}}\]
\[ = \int\frac{\left( \sin x + \cos x \right) dx}{\left| \sin x - \cos x \right|}\]
\[ = \pm \int\left( \frac{\sin x + \cos x}{\sin x - \cos x} \right)dx\]
\[\text{ Let sin x} - \cos x = t\]
\[ \Rightarrow \left( \cos x + \sin x \right)dx = dt\]
\[ \therefore I = \pm \int\frac{dt}{t}\]
\[ = \pm \text{ ln }\left| t \right| + C\]
\[ = \pm \text{ ln} \left| \sin x - \cos x \right| + C \left( \because t = \sin x - \cos x \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Very Short Answers [पृष्ठ १९७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Very Short Answers | Q 29 | पृष्ठ १९७

संबंधित प्रश्‍न

Evaluate :

`∫(x+2)/sqrt(x^2+5x+6)dx`


Evaluate :   `∫1/(cos^4x+sin^4x)dx`


Integrate the functions:

`1/(x + x log x)`


Integrate the functions:

sin x ⋅ sin (cos x)


Integrate the functions:

`xsqrt(x + 2)`


Evaluate : `∫1/(3+2sinx+cosx)dx`


Evaluate `int 1/(3+ 2 sinx + cosx) dx`


Write a value of

\[\int x^2 \sin x^3 \text{ dx }\]

Write a value of\[\int \cos^4 x \text{ sin x dx }\]


\[\int x \sin^3 x\ dx\]

Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`


Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`


Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`


Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`


Integrate the following functions w.r.t. x : cos7x


Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`


Evaluate the following : `int sinx/(sin 3x).dx`


Choose the correct option from the given alternatives : 

`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =


Choose the correct options from the given alternatives : 

`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =


Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`


Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`


Evaluate the following.

`int 1/(x(x^6 + 1))` dx 


`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c


Evaluate: `int 1/(sqrt("x") + "x")` dx


`int  ("e"^x(x - 1))/(x^2)  "d"x` = ______ 


`int cos^7 x  "d"x`


`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1))  "d"x`


`int x^3"e"^(x^2) "d"x`


General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)


If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.


The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.


`int 1/(sin^2x cos^2x)dx` = ______.


Evaluate the following.

`int x^3/sqrt(1+x^4) dx`


Evaluate the following:

`int (1) / (x^2 + 4x - 5) dx`


Evaluate the following:

`int x^3/(sqrt(1+x^4))dx`


If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`int1/(x^2 + 4x - 5)  dx`


Evaluate `int(5x^2-6x+3)/(2x-3)dx`


Evaluate `int1/(x(x - 1))dx`


Evaluate the following.

`int1/(x^2 + 4x - 5)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×