Advertisements
Advertisements
प्रश्न
Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]
उत्तर
\[\text{ Let I } = \int\frac{\left( \sin x + \cos x \right) dx}{\sqrt{1 - \sin 2x}}\]
\[ = \int\frac{\left( \sin x + \cos x \right) dx}{\sqrt{\sin^2 x + \cos^2 x - 2 \sin x \cos x}}\]
\[ = \int\frac{\left( \sin x + \cos x \right) dx}{\sqrt{\left( \sin x - \cos x \right)^2}}\]
\[ = \int\frac{\left( \sin x + \cos x \right) dx}{\left| \sin x - \cos x \right|}\]
\[ = \pm \int\left( \frac{\sin x + \cos x}{\sin x - \cos x} \right)dx\]
\[\text{ Let sin x} - \cos x = t\]
\[ \Rightarrow \left( \cos x + \sin x \right)dx = dt\]
\[ \therefore I = \pm \int\frac{dt}{t}\]
\[ = \pm \text{ ln }\left| t \right| + C\]
\[ = \pm \text{ ln} \left| \sin x - \cos x \right| + C \left( \because t = \sin x - \cos x \right)\]
APPEARS IN
संबंधित प्रश्न
Evaluate :
`∫(x+2)/sqrt(x^2+5x+6)dx`
Evaluate : `∫1/(cos^4x+sin^4x)dx`
Integrate the functions:
`1/(x + x log x)`
Integrate the functions:
sin x ⋅ sin (cos x)
Integrate the functions:
`xsqrt(x + 2)`
Evaluate : `∫1/(3+2sinx+cosx)dx`
Evaluate `int 1/(3+ 2 sinx + cosx) dx`
Write a value of
Write a value of\[\int \cos^4 x \text{ sin x dx }\]
Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`
Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`
Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`
Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`
Integrate the following functions w.r.t. x : cos7x
Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`
Evaluate the following : `int sinx/(sin 3x).dx`
Choose the correct option from the given alternatives :
`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =
Choose the correct options from the given alternatives :
`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =
Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`
Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`
Evaluate the following.
`int 1/(x(x^6 + 1))` dx
`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c
Evaluate: `int 1/(sqrt("x") + "x")` dx
`int ("e"^x(x - 1))/(x^2) "d"x` = ______
`int cos^7 x "d"x`
`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1)) "d"x`
`int x^3"e"^(x^2) "d"x`
General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)
If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.
The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.
`int 1/(sin^2x cos^2x)dx` = ______.
Evaluate the following.
`int x^3/sqrt(1+x^4) dx`
Evaluate the following:
`int (1) / (x^2 + 4x - 5) dx`
Evaluate the following:
`int x^3/(sqrt(1+x^4))dx`
If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int1/(x^2 + 4x - 5) dx`
Evaluate `int(5x^2-6x+3)/(2x-3)dx`
Evaluate `int1/(x(x - 1))dx`
Evaluate the following.
`int1/(x^2 + 4x - 5)dx`