English

Write a Value of ∫ Sin X − Cos X √ 1 + Sin 2 X D X - Mathematics

Advertisements
Advertisements

Question

Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]

Sum

Solution

\[\text{ Let I } = \int\frac{\left( \sin x + \cos x \right) dx}{\sqrt{1 - \sin 2x}}\]
\[ = \int\frac{\left( \sin x + \cos x \right) dx}{\sqrt{\sin^2 x + \cos^2 x - 2 \sin x \cos x}}\]
\[ = \int\frac{\left( \sin x + \cos x \right) dx}{\sqrt{\left( \sin x - \cos x \right)^2}}\]
\[ = \int\frac{\left( \sin x + \cos x \right) dx}{\left| \sin x - \cos x \right|}\]
\[ = \pm \int\left( \frac{\sin x + \cos x}{\sin x - \cos x} \right)dx\]
\[\text{ Let sin x} - \cos x = t\]
\[ \Rightarrow \left( \cos x + \sin x \right)dx = dt\]
\[ \therefore I = \pm \int\frac{dt}{t}\]
\[ = \pm \text{ ln }\left| t \right| + C\]
\[ = \pm \text{ ln} \left| \sin x - \cos x \right| + C \left( \because t = \sin x - \cos x \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Very Short Answers [Page 197]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Very Short Answers | Q 29 | Page 197

RELATED QUESTIONS

 
 

Evaluate :

`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`

 
 

Integrate the functions:

`(2x)/(1 + x^2)`


Integrate the functions:

`(x^3 - 1)^(1/3) x^5`


Integrate the functions:

`cos x /(sqrt(1+sinx))`


Integrate the functions:

`((x+1)(x + logx)^2)/x`


Integrate the functions:

`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`


\[\int\sqrt{1 + x - 2 x^2} \text{ dx }\]

\[\int\sqrt{16 x^2 + 25} \text{ dx}\]

Write a value of\[\int \cos^4 x \text{ sin x dx }\]


Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]


Write a value of\[\int \log_e x\ dx\].

 


Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .


The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is


\[\int x \sin^3 x\ dx\]

 Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log  |"x" +sqrt("x"^2 +"a"^2) | + "c"`


Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`


Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`


Evaluate the following : `int sinx/(sin 3x).dx`


Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`


Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`


Choose the correct options from the given alternatives :

`int (e^(2x) + e^-2x)/e^x*dx` =


Integrate the following with respect to the respective variable:

`x^7/(x + 1)`


Evaluate `int (3"x"^2 - 5)^2` dx


If f'(x) = 4x3 − 3x2  + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?


Choose the correct alternative from the following.

`int "dx"/(("x" - "x"^2))`= 


`int 1/sqrt((x - 3)(x + 2))` dx = ______.


`int sqrt(1 + sin2x)  "d"x`


`int 1/(xsin^2(logx))  "d"x`


`int (cos2x)/(sin^2x)  "d"x`


State whether the following statement is True or False:

`int3^(2x + 3)  "d"x = (3^(2x + 3))/2 + "c"`


`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.


`int sqrt(x^2 - a^2)/x dx` = ______.


Evaluate:

`int sin^3x cos^3x  dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate the following:

`int x^3/(sqrt(1 + x^4)) dx`


Evaluate the following.

`int1/(x^2+4x-5)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×