Advertisements
Advertisements
Question
Solution
\[\int \sqrt{16 x^2 + 25} \text{ dx}\]
\[ = \int \sqrt{16\left( x^2 + \frac{25}{16} \right)}\text{ dx}\]
\[ = 4\int \sqrt{x^2 + \left( \frac{5}{4} \right)^2} \text{ dx}\]
\[ = 4\left[ \frac{x}{2}\sqrt{x^2 + \left( \frac{5}{4} \right)^2} + \frac{\left( \frac{5}{4} \right)^2}{2}\text{ ln }\left| x + \sqrt{x^2 + \left( \frac{5}{4} \right)^2} \right| \right] + C \left[ \because \int\sqrt{x^2 + a^2} \text{ dx} = \frac{1}{2}x\sqrt{x^2 + a^2} + \frac{1}{2} a^2 \text{ ln}\left| x + \sqrt{x^2 + a^2} \right| + C \right]\]
\[ = 2x \sqrt{x^2 + \frac{25}{16}} + \frac{25}{8}\text{ ln }\left| x + \sqrt{x^2 + \frac{25}{16}} \right| + C\]
APPEARS IN
RELATED QUESTIONS
Integrate the functions:
`(2x)/(1 + x^2)`
Integrate the functions:
sin (ax + b) cos (ax + b)
Integrate the functions:
`1/(x-sqrtx)`
Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]
Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`
Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`
Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`
Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`
Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`
Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`
Integrate the following functions w.r.t. x:
`x^5sqrt(a^2 + x^2)`
Evaluate the following : `int (1)/(4x^2 - 3).dx`
Evaluate the following : `(1)/(4x^2 - 20x + 17)`
Evaluate the following:
`int (1)/sqrt((x - 3)(x + 2)).dx`
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
Evaluate the following.
`int 1/(4"x"^2 - 1)` dx
Evaluate the following.
`int 1/("a"^2 - "b"^2 "x"^2)` dx
`int sqrt(1 + "x"^2) "dx"` =
`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?
Choose the correct alternative from the following.
`int "dx"/(("x" - "x"^2))`=
Evaluate: `int 1/(sqrt("x") + "x")` dx
`int sqrt(x^2 + 2x + 5)` dx = ______________
`int ("e"^(2x) + "e"^(-2x))/("e"^x) "d"x`
`int (cos2x)/(sin^2x) "d"x`
`int x^3"e"^(x^2) "d"x`
`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.
If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.
`int (f^'(x))/(f(x))dx` = ______ + c.
The value of `intsinx/(sinx - cosx)dx` equals ______.
`int (x + sinx)/(1 + cosx)dx` is equal to ______.
`int cos^3x dx` = ______.
Evaluate:
`int sin^2(x/2)dx`
Evaluate the following.
`int1/(x^2+4x-5) dx`
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate `int(1+x+(x^2)/(2!))dx`
Evaluate the following.
`int x^3/sqrt(1+x^4) dx`
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4)) dx`
Evaluate `int (1 + x + x^2/(2!)) dx`