Advertisements
Advertisements
Question
Solution
\[\int \sqrt{9 - x^2} \text{ dx}\]
\[ = \int \sqrt{3^2 - x^2} \text{ dx}\]
\[ = \frac{x}{2}\sqrt{3^2 - x^2} + \frac{3^2}{2} \sin^{- 1} \left( \frac{x}{3} \right) + C \left[ \because \int\sqrt{a^2 - x^2} \text{ dx } = \frac{1}{2}x\sqrt{a^2 - x^2} + \frac{1}{2} a^2 \text{ sin}^{- 1} \left( \frac{x}{a} \right) + C \right]\]
\[ = \frac{x}{2}\sqrt{9 - x^2} + \frac{9}{2} \sin^{- 1} \left( \frac{x}{3} \right) + C\]
APPEARS IN
RELATED QUESTIONS
Find `intsqrtx/sqrt(a^3-x^3)dx`
Evaluate :
`∫(x+2)/sqrt(x^2+5x+6)dx`
Integrate the functions:
`sqrt(ax + b)`
Integrate the functions:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Integrate the functions:
`(2cosx - 3sinx)/(6cos x + 4 sin x)`
Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]
Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`
Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`
Integrate the following functions w.r.t. x:
`x^5sqrt(a^2 + x^2)`
Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`
Evaluate the following : `int (1)/(4 + 3cos^2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`
Integrate the following with respect to the respective variable:
`x^7/(x + 1)`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
State whether the following statement is True or False.
If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`
`int 1/sqrt((x - 3)(x + 2))` dx = ______.
`int ("e"^(3x))/("e"^(3x) + 1) "d"x`
Evaluate `int(3x^2 - 5)^2 "d"x`
`int (1 + x)/(x + "e"^(-x)) "d"x`
If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______
`int ("d"x)/(x(x^4 + 1))` = ______.
Write `int cotx dx`.
Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.
Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.
Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.
Evaluate `int(1 + x + x^2/(2!))dx`
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
Evaluate the following.
`intx sqrt(1 +x^2) dx`
Evaluate the following.
`int x^3/sqrt(1+x^4) dx`
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4)) dx`
Evaluate.
`int (5x^2 -6x + 3)/(2x -3)dx`
Evaluate `int 1/(x(x-1))dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).