Advertisements
Advertisements
Question
Find `intsqrtx/sqrt(a^3-x^3)dx`
Solution
`I=intsqrtx/sqrt(a^3-x^3)dx`
Let: `x^(3/2)=t`
`=>3/2x^(1/2)dx=dt`
`x^(1/2)dx=2/3dt`
Putting the values in I, we get
`I=intsqrtx/sqrt(a^3-x^3)dx`
`=2/3int1/(sqrt(a^3-t^2))dt`
Using the following formula of integration, we get
`intdx/sqrt(a^2-x^2)=sin^(-1)(x/a)`
`:.2/3int1/sqrt(a^3-t^2)dt=2/3sin^(-1)(t/(a^(3/2)))+C`
Again, putting the value of t, we get
`2/3int1/sqrt(a^3-t^2)dt=2/3sin^(-1)(t/a^(3/2))+C`
`=2/3sin^(-1)(x^(3/2)/a^(3/2))+C`
Here, C is constant of integration.
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Integrate the functions:
`cos sqrt(x)/sqrtx`
Integrate the functions:
`sqrt(tanx)/(sinxcos x)`
Write a value of\[\int a^x e^x \text{ dx }\]
\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]
Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`
Integrate the following w.r.t. x : x3 + x2 – x + 1
Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Integrate the following functions w.r.t. x:
`x^5sqrt(a^2 + x^2)`
Integrate the following functions w.r.t.x:
cos8xcotx
Integrate the following functions w.r.t. x : tan5x
Evaluate the following.
`int "x" sqrt(1 + "x"^2)` dx
Evaluate the following.
`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx
Evaluate the following.
`int 1/("x"^2 + 4"x" - 5)` dx
Evaluate the following.
`int 1/(4"x"^2 - 20"x" + 17)` dx
`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________
`int cos^7 x "d"x`
`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1)) "d"x`
`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?
If f'(x) = `x + 1/x`, then f(x) is ______.
`int dx/(2 + cos x)` = ______.
(where C is a constant of integration)
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
Evaluate the following.
`int x^3/(sqrt(1 + x^4))dx`
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3) dx`
Evaluate the following:
`int (1) / (x^2 + 4x - 5) dx`
Evaluate `int (1 + x + x^2/(2!)) dx`