English

Integrate the following functions w.r.t.x: cos8xcotx - Mathematics and Statistics

Advertisements
Advertisements

Question

Integrate the following functions w.r.t.x:

cos8xcotx

Sum

Solution

Let I = `int cos^8xcotxdx`

= `int cos^8x. cosx/sinx .dx`

Put sinx = t

∴ cosx dx = dt

cos8x = (cos2x)4

= (1 – sin2x)4

= (1 – t2)4

= 1 –  4t2 + 6t4 – 4t6 + t8

I = `int(1 - 4t^2 + 6t^4 - 4t^6 + t^8)/tdt`

= `int[1/t - 4t +6t^3 - 4t^5 + t^7]dt`

= `int 1/t dx - 4 int tdt + 6 int t^3 dt - 4 int t^5 dt + int t^7 dt`

= `log|t| - 4 (t^2/2) + 6(t^4/4) - 4(t^6/6) + t^8/(8) + c`

= `log|sinx| - 2sin^2x + 3/2 sin^4x - 2/3 sin^6x + (sin^8x)/(8) + c`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.2 (A) [Page 110]

RELATED QUESTIONS

Evaluate :`intxlogxdx`


Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.


Evaluate :   `∫1/(cos^4x+sin^4x)dx`


 
 

Evaluate :

`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`

 
 

Integrate the functions:

`xsqrt(x + 2)`


Integrate the functions:

(4x + 2) `sqrt(x^2 + x +1)`


Integrate the functions:

`1/(x-sqrtx)`


Integrate the functions:

`(x^3 - 1)^(1/3) x^5`


Integrate the functions:

`e^(2x+3)`


Integrate the functions:

`1/(cos^2 x(1-tan x)^2`


Integrate the functions:

`sin x/(1+ cos x)`


Evaluate : `∫1/(3+2sinx+cosx)dx`


\[\int\sqrt{3 + 2x - x^2} \text{ dx}\]

Write a value of

\[\int x^2 \sin x^3 \text{ dx }\]

Write a value of

\[\int \tan^3 x \sec^2 x \text{ dx }\].

 


Write a value of

\[\int e^{\text{ log  sin x  }}\text{ cos x}. \text{ dx}\]

Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].


Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]


Write a value of\[\int\frac{\cos x}{\sin x \log \sin x} dx\]

 


Write a value of

\[\int\frac{a^x}{3 + a^x} \text{ dx}\]

Write a value of

\[\int\frac{1 + \log x}{3 + x \log x} \text{ dx }\] .

Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].


Write a value of\[\int e^{ax} \sin\ bx\ dx\]


Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .


Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]


Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].


Evaluate:  \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]


\[If \int e^x \left( \tan x + 1 \right)\text{ sec  x  dx } = e^x f\left( x \right) + C, \text{ then  write  the value  of  f}\left( x \right) .\]

 

 


The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is


Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`


Evaluate the following integrals : tan2x dx


Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`


Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`


Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`


Integrate the following functions w.r.t. x:

`x^5sqrt(a^2 + x^2)`


Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`


Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`


Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`


Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`


Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`


Evaluate the following : `int (1)/(7 + 2x^2).dx`


Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`


Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`


Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`


`int logx/(log ex)^2*dx` = ______.


Choose the correct options from the given alternatives :

`int (e^(2x) + e^-2x)/e^x*dx` =


Integrate the following with respect to the respective variable:

`x^7/(x + 1)`


Evaluate the following.

`int (1 + "x")/("x" + "e"^"-x")` dx


Evaluate the following.

`int 1/("x" log "x")`dx


Evaluate the following.

`int 1/(sqrt"x" + "x")` dx


Evaluate the following.

`int "x"^3/(16"x"^8 - 25)` dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 - 5))` dx


Choose the correct alternative from the following.

The value of `int "dx"/sqrt"1 - x"` is


Choose the correct alternative from the following.

`int "x"^2 (3)^("x"^3) "dx"` =


Fill in the Blank.

`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______


State whether the following statement is True or False.

If `int x  "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.


Evaluate `int "x - 1"/sqrt("x + 4")` dx


Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx


Evaluate: `int sqrt(x^2 - 8x + 7)` dx


`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________


`int cos sqrtx` dx = _____________


`int (sin4x)/(cos 2x) "d"x`


`int ("e"^(2x) + "e"^(-2x))/("e"^x)  "d"x`


`int x/(x + 2)  "d"x`


State whether the following statement is True or False:

`int sqrt(1 + x^2) *x  "d"x = 1/3(1 + x^2)^(3/2) + "c"`


`int (1 + x)/(x + "e"^(-x))  "d"x`


`int sin^-1 x`dx = ?


If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.


`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?


`int dx/(1 + e^-x)` = ______


`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`


General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)


`int sec^6 x tan x   "d"x` = ______.


`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.


If f'(x) = `x + 1/x`, then f(x) is ______.


If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.


Find `int dx/sqrt(sin^3x cos(x - α))`.


Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.


Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.


Evaluate `int (1+x+x^2/(2!))dx`


Evaluate `int(1+ x + x^2/(2!)) dx`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


`int 1/(sin^2x cos^2x)dx` = ______.


Evaluate the following.

`intx sqrt(1 +x^2)  dx`


Evaluate the following:

`int x^3/(sqrt(1+x^4))dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate the following.

`int "x"^3/sqrt(1 + "x"^4)` dx


Evaluate.

`int (5x^2 -6x + 3)/(2x -3)dx`


If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate `int(1 + x + x^2 / (2!))dx`


Evaluate `int (1 + x + x^2/(2!)) dx`


If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate:

`intsqrt(sec  x/2 - 1)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×