Advertisements
Advertisements
Question
State whether the following statement is True or False.
If `int x "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.
Options
True
False
Solution
False
Explanation:
Let I = `int "x" * "e"^"2x"` dx
`= "x" int "e"^"2x" * "dx" - int ["d"/"dx" ("x") int "e"^"2x" * "dx"]` dx
`= "x" * "e"^"2x"/2 - int 1 * "e"^"2x"/2 * "dx"`
`= "x"/2 "e"^"2x" - 1/2 int "e"^"2x" +` c
`= "x"/2 "e"^"2x" - 1/2 * "e"^"2x"/2` + c
`= "e"^"2x" ("x"/2 - 1/4)` + c
`= "e"^"2x" (("2x" - 1)/4)` + c
∴ f(x) = `(2"x" - 1)/4`
APPEARS IN
RELATED QUESTIONS
Integrate the functions:
`x/(9 - 4x^2)`
Integrate the functions:
sec2(7 – 4x)
Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].
Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`
Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`
Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`
Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`
Evaluate the following.
`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx
If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______
`int ("e"^x(x - 1))/(x^2) "d"x` = ______
`int x^x (1 + logx) "d"x`
`int[ tan (log x) + sec^2 (log x)] dx= ` ______
Evaluate:
`int 1/(1 + cosα . cosx)dx`
Evaluate the following.
`intx sqrt(1 +x^2) dx`
Evaluate:
`intsqrt(3 + 4x - 4x^2) dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`