English

Integrate the following functions w.r.t. x : 14x+5x-11 - Mathematics and Statistics

Advertisements
Advertisements

Question

Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`

Sum

Solution

Let I = `int(1)/(4x + 5x^-11).dx`

= `int x_11/(x^11(4x + 5x^-11)).dx`

= `int x^11/(4x^12 + 5).dx`

= `(1)/(48) int(48x^11)/(4x^12 + 5).dx`

= `(1)/(48) int(d/dx(4x^12 + 5))/(4x^12 + 5).dx`

= `(1)/(48)log|4x^12 + 5| + c     ...[∵ int (f'(x))/f(x) dx = log|f(x)| + c]`

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.2 (A) [Page 110]

APPEARS IN

RELATED QUESTIONS

Evaluate :`intxlogxdx`


Evaluate : `int(x-3)sqrt(x^2+3x-18)  dx`


Evaluate: `int sqrt(tanx)/(sinxcosx) dx`


Integrate the functions:

`(2x)/(1 + x^2)`


Integrate the functions:

`1/(x + x log x)`


Integrate the functions:

`x/(sqrt(x+ 4))`, x > 0 


Integrate the functions:

`x^2/(2+ 3x^3)^3`


Integrate the functions:

`cos sqrt(x)/sqrtx`


Integrate the functions:

`(sin x)/(1+ cos x)^2`


Solve: dy/dx = cos(x + y)


\[\int\sqrt{3 + 2x - x^2} \text{ dx}\]

\[\int\sqrt{1 + x - 2 x^2} \text{ dx }\]

Write a value of

\[\int\frac{1 + \cot x}{x + \log \sin x} \text{ dx }\]

Write a value of

\[\int e^x \sec x \left( 1 + \tan x \right) \text{ dx }\]

Write a value of

\[\int e^{2 x^2 + \ln x} \text{ dx}\]

Write a value of

\[\int\frac{1 + \log x}{3 + x \log x} \text{ dx }\] .

Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]


Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]


Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .


Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]


Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].


Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]


\[\int\frac{\cos^5 x}{\sin x} \text{ dx }\]

 Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`


Integrate the following w.r.t. x:

`2x^3 - 5x + 3/x + 4/x^5`


Evaluate the following integrals:

`int (cos2x)/sin^2x dx` 


Evaluate the following integrals:

`int x/(x + 2).dx`


Evaluate the following integrals : `int cos^2x.dx`


Evaluate the following integrals:

`int(2)/(sqrt(x) - sqrt(x + 3)).dx`


Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`


Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1 


Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`


Integrate the following functions w.r.t.x:

`(5 - 3x)(2 - 3x)^(-1/2)`


Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`


Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.


Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`


Evaluate the following : `int (1)/(4x^2 - 3).dx`


Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`


Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`


Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`


Evaluate the following integrals:

`int (7x + 3)/sqrt(3 + 2x - x^2).dx`


Choose the correct options from the given alternatives :

`int (e^x(x - 1))/x^2*dx` =


Choose the correct options from the given alternatives : 

`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =


Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx


Evaluate the following.

`int 1/(x(x^6 + 1))` dx 


Evaluate the following.

`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx


Evaluate the following.

`int 1/("a"^2 - "b"^2 "x"^2)` dx


Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx


Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx


`int 1/(cos x - sin x)` dx = _______________


`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________


`int sqrt(1 + sin2x)  "d"x`


`int logx/x  "d"x`


`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`


State whether the following statement is True or False:

`int"e"^(4x - 7)  "d"x = ("e"^(4x - 7))/(-7) + "c"`


Evaluate `int(3x^2 - 5)^2  "d"x`


`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.


`int sqrt(x^2 - a^2)/x dx` = ______.


`int 1/(sinx.cos^2x)dx` = ______.


Write `int cotx  dx`.


Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.


`int secx/(secx - tanx)dx` equals ______.


Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.


Evaluate the following.

`intx sqrt(1 +x^2)  dx`


Evaluate:

`int(cos 2x)/sinx dx`


Evaluate the following:

`int (1) / (x^2 + 4x - 5) dx`


Evaluate `int (1 + x + x^2/(2!)) dx`


Evaluate `int 1/(x(x-1))dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate `int 1/(x(x-1))dx`


Evaluate `int 1/(x(x-1)) dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x). 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×