Advertisements
Advertisements
Question
Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`
Solution
Let I = `int(1)/(4x + 5x^-11).dx`
= `int x_11/(x^11(4x + 5x^-11)).dx`
= `int x^11/(4x^12 + 5).dx`
= `(1)/(48) int(48x^11)/(4x^12 + 5).dx`
= `(1)/(48) int(d/dx(4x^12 + 5))/(4x^12 + 5).dx`
= `(1)/(48)log|4x^12 + 5| + c ...[∵ int (f'(x))/f(x) dx = log|f(x)| + c]`
APPEARS IN
RELATED QUESTIONS
Evaluate :`intxlogxdx`
Evaluate : `int(x-3)sqrt(x^2+3x-18) dx`
Evaluate: `int sqrt(tanx)/(sinxcosx) dx`
Integrate the functions:
`(2x)/(1 + x^2)`
Integrate the functions:
`1/(x + x log x)`
Integrate the functions:
`x/(sqrt(x+ 4))`, x > 0
Integrate the functions:
`x^2/(2+ 3x^3)^3`
Integrate the functions:
`cos sqrt(x)/sqrtx`
Integrate the functions:
`(sin x)/(1+ cos x)^2`
Solve: dy/dx = cos(x + y)
Write a value of
Write a value of
Write a value of
Write a value of
Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]
Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]
Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .
Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]
Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].
Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]
Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`
Integrate the following w.r.t. x:
`2x^3 - 5x + 3/x + 4/x^5`
Evaluate the following integrals:
`int (cos2x)/sin^2x dx`
Evaluate the following integrals:
`int x/(x + 2).dx`
Evaluate the following integrals : `int cos^2x.dx`
Evaluate the following integrals:
`int(2)/(sqrt(x) - sqrt(x + 3)).dx`
Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`
Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1
Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`
Integrate the following functions w.r.t.x:
`(5 - 3x)(2 - 3x)^(-1/2)`
Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`
Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.
Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`
Evaluate the following : `int (1)/(4x^2 - 3).dx`
Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`
Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`
Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`
Evaluate the following integrals:
`int (7x + 3)/sqrt(3 + 2x - x^2).dx`
Choose the correct options from the given alternatives :
`int (e^x(x - 1))/x^2*dx` =
Choose the correct options from the given alternatives :
`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =
Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx
Evaluate the following.
`int 1/(x(x^6 + 1))` dx
Evaluate the following.
`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx
Evaluate the following.
`int 1/("a"^2 - "b"^2 "x"^2)` dx
Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx
Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx
`int 1/(cos x - sin x)` dx = _______________
`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________
`int sqrt(1 + sin2x) "d"x`
`int logx/x "d"x`
`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`
State whether the following statement is True or False:
`int"e"^(4x - 7) "d"x = ("e"^(4x - 7))/(-7) + "c"`
Evaluate `int(3x^2 - 5)^2 "d"x`
`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.
`int sqrt(x^2 - a^2)/x dx` = ______.
`int 1/(sinx.cos^2x)dx` = ______.
Write `int cotx dx`.
Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.
`int secx/(secx - tanx)dx` equals ______.
Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.
Evaluate the following.
`intx sqrt(1 +x^2) dx`
Evaluate:
`int(cos 2x)/sinx dx`
Evaluate the following:
`int (1) / (x^2 + 4x - 5) dx`
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate `int 1/(x(x-1)) dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).