Advertisements
Advertisements
Question
Evaluate the following.
`int 1/(x(x^6 + 1))` dx
Solution
Let I = `int 1/(x(x^6 + 1))` dx
`= int x^5/(x^6(x^6 + 1))`dx
Put x6 = t
∴ 6x5 dx = dt
∴ `x^5 * dx = 1/6 * dt`
∴ I = `1/6 int dt/(t(t + 1))`
`= 1/6 int ((t + 1) - t)/(t(t + 1))` dt
`= 1/6 int (1/t - 1/(t + 1))` dt
= `1/6` [log | t | - log |t + 1|] + c
`= 1/6 log |t/(t + 1)|` + c
∴ I = `1/6 log |x^6/(x^6 + 1)|` + c
RELATED QUESTIONS
Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`
Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`
Integrate the functions:
`e^(tan^(-1)x)/(1+x^2)`
Integrate the functions:
`(1+ log x)^2/x`
Evaluate `int 1/(3+ 2 sinx + cosx) dx`
Write a value of
Write a value of
Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].
`int "dx"/(9"x"^2 + 1)= ______. `
Integrate the following functions w.r.t. x : `cosx/sin(x - a)`
Integrate the following functions w.r.t. x : sin5x.cos8x
Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
Fill in the Blank.
`int (5("x"^6 + 1))/("x"^2 + 1)` dx = x4 + ______ x3 + 5x + c
State whether the following statement is True or False.
If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`
Evaluate: `int "x" * "e"^"2x"` dx
`int 1/sqrt((x - 3)(x + 2))` dx = ______.
`int cos^7 x "d"x`
`int(log(logx))/x "d"x`
State whether the following statement is True or False:
If `int x "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`
State whether the following statement is True or False:
`int sqrt(1 + x^2) *x "d"x = 1/3(1 + x^2)^(3/2) + "c"`
Evaluate `int"e"^x (1/x - 1/x^2) "d"x`
`int dx/(1 + e^-x)` = ______
`int cos^3x dx` = ______.
`int x^3 e^(x^2) dx`
Evaluate the following
`int x^3/sqrt(1+x^4) dx`
Evaluate:
`int sqrt((a - x)/x) dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate `int(5x^2-6x+3)/(2x-3)dx`
Evaluate `int 1/(x(x-1)) dx`