Advertisements
Advertisements
Question
Evaluate the following.
`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt
Solution
Let I = `int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt
Let `(3"e")^"2t" + 5 = "A"(4"e"^"2t" - 5) + "B" "d"/"dt" (4"e"^"2t" - 5)`
`= 4 "Ae"^"2t" - 5"A" + "B"(8"e"^"2t")`
∴ `(3"e")^"2t" + 5 = (4"A" + 8"B") "e"^"2t" - 5"A"`
Comparing the coefficients of e2t and constant term on both sides, we get
4A + 8B = 3 and - 5A = 5
Solving these equations, we get
A = - 1 and B = `7/8`
∴ I = `int (- 1(4"e"^"2t" - 5) + 7/8 (8"e"^"2t"))/(4"e"^"2t" - 5)` dt
`= - int "dt" + 7/8 int (8"e"^"2t")/(4"e"^"2t" - 5)` dt
∴ I = `- "t" + 7/8 log |4"e"^"2t" - 5|` + c .....`[int ("f" '("x"))/("f" ("x")) "dx" = log |f ("x")| + "c"]`
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`
Evaluate : `∫1/(cos^4x+sin^4x)dx`
Integrate the functions:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Solve: dy/dx = cos(x + y)
Evaluate: `int (2y^2)/(y^2 + 4)dx`
The value of \[\int\frac{1}{x + x \log x} dx\] is
Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`
Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`
Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`
Integrate the following functions w.r.t. x : cos7x
Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`
Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`
Evaluate the following.
`int 1/(x(x^6 + 1))` dx
`int (cos2x)/(sin^2x) "d"x`
`int (cos x)/(1 - sin x) "dx" =` ______.
Evaluate the following.
`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Prove that:
`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.
`int 1/(sin^2x cos^2x)dx` = ______.
Evaluate `int(5x^2-6x+3)/(2x-3)dx`