Advertisements
Advertisements
Question
Solve: dy/dx = cos(x + y)
Solution
Given,
`dy/dx= cos (x + y)` …(i)
Put `x + y = v` …(ii)
`∴ y = v – x`
`∴ dy/dx=(dv)/dx-1` …(iii)
Substituting (ii) and (iii) in (i), we get
`(dv)/dx-1=cosv`
`therefore (dv)/dx=1+cosv`
`therefore (dv)/dx=2cos^2(v/2)`
`therefore 1/cos^2(v/2)dv=2dx`
`therefore sec^2(v/2)dv=2dx`
Integrating on both sides, we get
`int sec^2(v/2)dv=2intdx`
`therefore 2tan(v/2)=2x+c'`
`therefore tan(v/2)=x+(c')/2`
`therefore tan((x+y)/2)=x+c`, where `c=(c')/2`
APPEARS IN
RELATED QUESTIONS
Evaluate : `∫1/(cos^4x+sin^4x)dx`
Evaluate: `int sqrt(tanx)/(sinxcosx) dx`
Integrate the functions:
`1/(x + x log x)`
Integrate the functions:
(4x + 2) `sqrt(x^2 + x +1)`
Integrate the functions:
`x/(sqrt(x+ 4))`, x > 0
Integrate the functions:
`x/(9 - 4x^2)`
Integrate the functions:
tan2(2x – 3)
Integrate the functions:
sec2(7 – 4x)
Integrate the functions:
`1/(1 - tan x)`
Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]
Write a value of\[\int\left( e^{x \log_e \text{ a}} + e^{a \log_e x} \right) dx\] .
Evaluate the following integrals : `int sin x/cos^2x dx`
Evaluate the following integrals : `int sinx/(1 + sinx)dx`
Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`
Evaluate the following integrals:
`int(2)/(sqrt(x) - sqrt(x + 3)).dx`
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`
Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`
Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`
Integrate the following functions w.r.t. x:
`x^5sqrt(a^2 + x^2)`
Integrate the following functions w.r.t. x : `sin(x - a)/cos(x + b)`
Evaluate the following:
`int (1)/sqrt((x - 3)(x + 2)).dx`
Evaluate the following : `int (1)/(4 + 3cos^2x).dx`
Evaluate the following : `int sinx/(sin 3x).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`
Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`
Evaluate the following integrals:
`int (7x + 3)/sqrt(3 + 2x - x^2).dx`
Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`
Choose the correct options from the given alternatives :
`int sqrt(cotx)/(sinx*cosx)*dx` =
Choose the correct options from the given alternatives :
`int (e^x(x - 1))/x^2*dx` =
`int logx/(log ex)^2*dx` = ______.
Evaluate `int 1/("x" ("x" - 1))` dx
Evaluate the following.
`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx
Evaluate the following.
`int 1/(4"x"^2 - 1)` dx
Evaluate the following.
`int 1/("x"^2 + 4"x" - 5)` dx
Evaluate the following.
`int 1/(7 + 6"x" - "x"^2)` dx
Evaluate the following.
`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx
Choose the correct alternative from the following.
The value of `int "dx"/sqrt"1 - x"` is
State whether the following statement is True or False.
The proper substitution for `int x(x^x)^x (2log x + 1) "d"x` is `(x^x)^x` = t
If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______
`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1)) "d"x`
To find the value of `int ((1 + logx))/x` dx the proper substitution is ______
Evaluate `int"e"^x (1/x - 1/x^2) "d"x`
`int x^3"e"^(x^2) "d"x`
`int sin^-1 x`dx = ?
`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`
`int sec^6 x tan x "d"x` = ______.
If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
The value of `intsinx/(sinx - cosx)dx` equals ______.
`int (x + sinx)/(1 + cosx)dx` is equal to ______.
`int sqrt(x^2 - a^2)/x dx` = ______.
`int 1/(sinx.cos^2x)dx` = ______.
The value of `sqrt(2) int (sinx dx)/(sin(x - π/4))` is ______.
`int dx/(2 + cos x)` = ______.
(where C is a constant of integration)
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
`int "cosec"^4x dx` = ______.
`int 1/(sin^2x cos^2x)dx` = ______.
Evaluate:
`intsqrt(3 + 4x - 4x^2) dx`
Evaluate:
`int sin^3x cos^3x dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate `int(1 + x + x^2 / (2!))dx`
Evaluate `int (1 + x + x^2/(2!)) dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate `int 1/(x(x-1)) dx`