English

Solve: dy/dx = cos(x + y) - Mathematics and Statistics

Advertisements
Advertisements

Question

Solve: dy/dx = cos(x + y)

Sum
Theorem

Solution

Given,

`dy/dx= cos (x + y)` …(i)

Put `x + y = v`        …(ii)

`∴ y = v – x`

`∴ dy/dx=(dv)/dx-1`  …(iii)

Substituting (ii) and (iii) in (i), we get

`(dv)/dx-1=cosv`

`therefore (dv)/dx=1+cosv`

`therefore (dv)/dx=2cos^2(v/2)`

`therefore 1/cos^2(v/2)dv=2dx`

`therefore sec^2(v/2)dv=2dx`

Integrating on both sides, we get

`int sec^2(v/2)dv=2intdx`

`therefore 2tan(v/2)=2x+c'`

`therefore tan(v/2)=x+(c')/2`

`therefore tan((x+y)/2)=x+c`, where `c=(c')/2`

shaalaa.com
  Is there an error in this question or solution?
2016-2017 (March)

APPEARS IN

RELATED QUESTIONS

Evaluate :   `∫1/(cos^4x+sin^4x)dx`


Evaluate: `int sqrt(tanx)/(sinxcosx) dx`


Integrate the functions:

`1/(x + x log x)`


Integrate the functions:

(4x + 2) `sqrt(x^2 + x +1)`


Integrate the functions:

`x/(sqrt(x+ 4))`, x > 0 


Integrate the functions:

`x/(9 - 4x^2)`


Integrate the functions:

tan2(2x – 3)


Integrate the functions:

sec2(7 – 4x)


Integrate the functions:

`1/(1 - tan x)`


\[\int\sqrt{1 + x - 2 x^2} \text{ dx }\]

Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]


Write a value of\[\int\left( e^{x \log_e \text{  a}} + e^{a \log_e x} \right) dx\] .


Write a value of\[\int e^{ax} \cos\ bx\ dx\].

 


\[If \int e^x \left( \tan x + 1 \right)\text{ sec  x  dx } = e^x f\left( x \right) + C, \text{ then  write  the value  of  f}\left( x \right) .\]

 

 


Evaluate the following integrals : `int sin x/cos^2x dx`


Evaluate the following integrals : `int sinx/(1 + sinx)dx`


Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`


Evaluate the following integrals:

`int(2)/(sqrt(x) - sqrt(x + 3)).dx`


Integrate the following functions w.r.t. x : `(logx)^n/x`


Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`


Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`


Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`


Integrate the following functions w.r.t. x:

`x^5sqrt(a^2 + x^2)`


Integrate the following functions w.r.t. x : `sin(x - a)/cos(x  + b)`


Evaluate the following:

`int (1)/sqrt((x - 3)(x + 2)).dx`


Evaluate the following : `int (1)/(4 + 3cos^2x).dx`


Evaluate the following : `int sinx/(sin 3x).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`


Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`


Evaluate the following integrals:

`int (7x + 3)/sqrt(3 + 2x - x^2).dx`


Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`


Choose the correct options from the given alternatives :

`int sqrt(cotx)/(sinx*cosx)*dx` =


Choose the correct options from the given alternatives :

`int (e^x(x - 1))/x^2*dx` =


`int logx/(log ex)^2*dx` = ______.


Evaluate `int 1/("x" ("x" - 1))` dx


Evaluate the following.

`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx


Evaluate the following.

`int 1/(4"x"^2 - 1)` dx


Evaluate the following.

`int 1/("x"^2 + 4"x" - 5)` dx


Evaluate the following.

`int 1/(7 + 6"x" - "x"^2)` dx


Evaluate the following.

`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx


Choose the correct alternative from the following.

The value of `int "dx"/sqrt"1 - x"` is


State whether the following statement is True or False.

The proper substitution for `int x(x^x)^x (2log x + 1)  "d"x` is `(x^x)^x` = t


If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______


`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1))  "d"x`


To find the value of `int ((1 + logx))/x` dx the proper substitution is ______


Evaluate  `int"e"^x (1/x - 1/x^2)  "d"x`


`int x^3"e"^(x^2) "d"x`


`int sin^-1 x`dx = ?


`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`


`int sec^6 x tan x   "d"x` = ______.


If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.


`int(7x - 2)^2dx = (7x -2)^3/21 + c`


The value of `intsinx/(sinx - cosx)dx` equals ______.


`int (x + sinx)/(1 + cosx)dx` is equal to ______.


`int sqrt(x^2 - a^2)/x dx` = ______.


`int 1/(sinx.cos^2x)dx` = ______.


The value of `sqrt(2) int (sinx  dx)/(sin(x - π/4))` is ______.


`int dx/(2 + cos x)` = ______.

(where C is a constant of integration)


Evaluate.

`int(5"x"^2 - 6"x" + 3)/(2"x" - 3)  "dx"`


`int "cosec"^4x  dx` = ______.


`int 1/(sin^2x cos^2x)dx` = ______.


Evaluate:

`intsqrt(3 + 4x - 4x^2)  dx`


Evaluate:

`int sin^3x cos^3x  dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate `int(1 + x + x^2 / (2!))dx`


Evaluate `int (1 + x + x^2/(2!)) dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate `int 1/(x(x-1)) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×