Advertisements
Advertisements
Question
Evaluate `int 1/("x" ("x" - 1))` dx
Solution
Let I = `int 1/("x" ("x" - 1))` dx
`= int ("x" - "x" + 1)/("x"("x" - 1))` dx
`= int ("x" - ("x" - 1))/("x"("x" - 1))` dx
`= int (1/("x" - 1) - 1/"x")` dx
`= int 1/("x" - 1) "dx" - int 1/"x" "dx"`
`= log |"x" - 1| - log |"x"| + "c"`
∴ I = log `|("x" - 1)/"x"| + "c"`
APPEARS IN
RELATED QUESTIONS
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Find `intsqrtx/sqrt(a^3-x^3)dx`
Evaluate : `∫1/(cos^4x+sin^4x)dx`
Integrate the functions:
`sqrt(tanx)/(sinxcos x)`
Integrate the functions:
`(1+ log x)^2/x`
Write a value of
Evaluate: \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]
Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`
Evaluate the following : `int (logx)2.dx`
Evaluate: `int "e"^sqrt"x"` dx
Evaluate: `int sqrt(x^2 - 8x + 7)` dx
`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________
`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1)) "d"x`
`int (1 + x)/(x + "e"^(-x)) "d"x`
`int sin^-1 x`dx = ?
`int x^3 e^(x^2) dx`
If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).