Advertisements
Advertisements
Question
Write a value of
Solution
\[\text{ Let I }= \int\frac{1 + \cot x}{x + \text{ log sin x}}dx\]
\[\text{ Let x } + \log \sin x = t\]
\[ \Rightarrow \left( 1 + \frac{1}{\sin x} \times \cos x \right) dx = dt\]
\[ \Rightarrow \left( 1 + \cot x \right)dx = dt\]
\[ \therefore I = \int\frac{dt}{t}\]
\[ = \text{ log }\left| t \right| + C\]
\[ = \text{ log } \left| x + \log \sin x \right| + C\]
APPEARS IN
RELATED QUESTIONS
Integrate the functions:
sin x ⋅ sin (cos x)
Integrate the functions:
`x/(9 - 4x^2)`
Integrate the functions:
`e^(2x+3)`
Integrate the functions:
`(sin x)/(1+ cos x)^2`
Integrate the functions:
`1/(1 + cot x)`
Write a value of
Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]
Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]
Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log |"x" +sqrt("x"^2 +"a"^2) | + "c"`
Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`
Integrate the following w.r.t. x : x3 + x2 – x + 1
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`
Integrate the following functions w.r.t. x:
`(10x^9 10^x.log10)/(10^x + x^10)`
Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`
Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`
Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`
Evaluate the following : `int (1)/(x^2 + 8x + 12).dx`
Evaluate the following : `int (logx)2.dx`
Choose the correct options from the given alternatives :
`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =
Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
Evaluate the following.
`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt
Evaluate the following.
`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx
`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?
`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c
Evaluate: `int log ("x"^2 + "x")` dx
`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`
`int ("e"^(2x) + "e"^(-2x))/("e"^x) "d"x`
Choose the correct alternative:
`int(1 - x)^(-2) dx` = ______.
State whether the following statement is True or False:
`int3^(2x + 3) "d"x = (3^(2x + 3))/2 + "c"`
`int(sin2x)/(5sin^2x+3cos^2x) dx=` ______.
The value of `intsinx/(sinx - cosx)dx` equals ______.
`int sqrt(x^2 - a^2)/x dx` = ______.
Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.
Evaluate the following.
`int x^3/(sqrt(1 + x^4))dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate `int (1)/(x(x - 1))dx`
Evaluate:
`int(cos 2x)/sinx dx`
Evaluate:
`intsqrt(sec x/2 - 1)dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4) dx`