English

Write a Value of ∫ 1 + Cot X X + Log Sin X D X - Mathematics

Advertisements
Advertisements

Question

Write a value of

\[\int\frac{1 + \cot x}{x + \log \sin x} \text{ dx }\]
Sum

Solution

\[\text{ Let I }= \int\frac{1 + \cot x}{x + \text{ log  sin x}}dx\]
\[\text{ Let x } + \log \sin x = t\]
\[ \Rightarrow \left( 1 + \frac{1}{\sin x} \times \cos x \right) dx = dt\]
\[ \Rightarrow \left( 1 + \cot x \right)dx = dt\]
\[ \therefore I = \int\frac{dt}{t}\]
\[ = \text{ log }\left| t \right| + C\]
\[ = \text{ log } \left| x + \log \sin x \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Very Short Answers [Page 197]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Very Short Answers | Q 1 | Page 197

RELATED QUESTIONS

Integrate the functions:

sin x ⋅ sin (cos x)


Integrate the functions:

`x/(9 - 4x^2)`


Integrate the functions:

`e^(2x+3)`


Integrate the functions:

`(sin x)/(1+ cos x)^2`


Integrate the functions:

`1/(1 + cot x)`


Write a value of

\[\int e^x \left( \sin x + \cos x \right) \text{ dx}\]

 


Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]


Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]


 Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log  |"x" +sqrt("x"^2 +"a"^2) | + "c"`


 Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`


Integrate the following w.r.t. x : x3 + x2 – x + 1


Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`


Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`


Integrate the following functions w.r.t. x:

`(10x^9  10^x.log10)/(10^x + x^10)`


Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`


Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`


Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`


Evaluate the following : `int  (1)/(x^2 + 8x + 12).dx`


Evaluate the following : `int (logx)2.dx`


Choose the correct options from the given alternatives : 

`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =


Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx


Evaluate the following.

`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt


Evaluate the following.

`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx


`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?


`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c


Evaluate: `int log ("x"^2 + "x")` dx


`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`


`int ("e"^(2x) + "e"^(-2x))/("e"^x)  "d"x`


Choose the correct alternative:

`int(1 - x)^(-2) dx` = ______.


State whether the following statement is True or False:

`int3^(2x + 3)  "d"x = (3^(2x + 3))/2 + "c"`


`int(sin2x)/(5sin^2x+3cos^2x)  dx=` ______.


The value of `intsinx/(sinx - cosx)dx` equals ______.


`int sqrt(x^2 - a^2)/x dx` = ______.


Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.


Evaluate the following.

`int x^3/(sqrt(1 + x^4))dx`


Evaluate the following.

`int x sqrt(1 + x^2)  dx`


Evaluate `int (1)/(x(x - 1))dx`


Evaluate:

`int(cos 2x)/sinx dx`


Evaluate:

`intsqrt(sec  x/2 - 1)dx`


Evaluate the following.

`intx^3/sqrt(1 + x^4) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×