Advertisements
Advertisements
Question
Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]
Solution
\[\text{ Let I} = \int \frac{\text{ sin 2x dx}}{a^2 \sin^2 + b^2 \cos^2 x}\]
\[\text{ Let a}^2 \sin^2 x + b^2 \cos^2 x = t\]
\[ \Rightarrow \left[ a^2 \left( 2 \sin x \cos x \right) + b^2 \left( 2 \cos x \times - \sin x \right) \right]dx = dt\]
\[ \Rightarrow \left( a^2 - b^2 \right) \text{ sin 2x . dx} = dt\]
\[ \Rightarrow \text{ sin 2x dx }= \frac{dt}{a^2 - b^2}\]
\[ \therefore I = \frac{1}{a^2 - b^2}\int\frac{dt}{t}\]
\[ = \frac{1}{a^2 - b^2}\log t + C\]
\[ = \frac{1}{a^2 - b^2}\log \left(\text{ a} ^2 \sin^2 x + b^2 \cos^2 x \right) + C \left( \because t = a^2 \sin^2 x + b^2 \cos^2 x \right)\]
APPEARS IN
RELATED QUESTIONS
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Find `intsqrtx/sqrt(a^3-x^3)dx`
Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.
Integrate the functions:
`sqrt(ax + b)`
Integrate the functions:
`xsqrt(1+ 2x^2)`
Integrate the functions:
`x/(e^(x^2))`
Integrate the functions:
`((x+1)(x + logx)^2)/x`
Write a value of
Write a value of
Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`
Evaluate the following integrals:
`int (cos2x)/sin^2x dx`
Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`
Evaluate the following integrals : `int cos^2x.dx`
Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`
Integrate the following functions w.r.t. x : `sin(x - a)/cos(x + b)`
Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`
Evaluate the following:
`int (1)/(25 - 9x^2)*dx`
Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`
Evaluate the following integrals : `int sqrt((9 - x)/x).dx`
Choose the correct options from the given alternatives :
`int f x^x (1 + log x)*dx`
Choose the correct options from the given alternatives :
`int (cos2x - 1)/(cos2x + 1)*dx` =
Evaluate the following.
`int 1/("x" log "x")`dx
State whether the following statement is True or False.
The proper substitution for `int x(x^x)^x (2log x + 1) "d"x` is `(x^x)^x` = t
Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx
`int 1/sqrt((x - 3)(x + 2))` dx = ______.
`int cos sqrtx` dx = _____________
`int logx/x "d"x`
`int cot^2x "d"x`
`int(5x + 2)/(3x - 4) dx` = ______
`int(sin2x)/(5sin^2x+3cos^2x) dx=` ______.
Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.
Evaluate `int (1+x+x^2/(2!))dx`
Prove that:
`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.
Evaluate:
`int(sqrt(tanx) + sqrt(cotx))dx`
Evaluate the following.
`int1/(x^2+4x-5) dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate:
`intsqrt(sec x/2 - 1)dx`